DSSI Data Reduction and Examples

Elliott Horch, Department of Physics,

Southern Connecticut State Univ.

Collaborators

- Kepler
 - Steve Howell (NASA)
 - Mark Everett (NOAO)
 - David Ciardi (Caltech)
- Field Binary Survey
 - Bill van Altena (Yale U.)
 - Pierre Demarque (Yale U.)
 - Y. -C. Kim (Yonsei U.)
- Cluster Binaries
 - Bob Mathieu (U. Wisconsin)
 - Aaron Geller (Northwestern U.)

A Uniquely Capable Speckle Imager Built at SCSU

The Differential Speckle Survey Instrument (DSSI)

- Two channel EMCCD-based speckle camera, completed in August, 2008
- Observe two colors at the same time (dichroic beamsplitter inside).
- Differential refraction

10.05.2014

Lowell Speckle Workshop

DSSI Result: A Binary Star (WIYN)

(a)

(c)

10.05.2014

Lowell Speckle Workshop

Basic Data Reduction Steps

- Debias frames.
- Compute autocorrelation of each frame, sum these.
 Compute FT and take the square root.
- Divide this by same function computed for a point source.
- Compute 10 bispectral subplanes (5 each in two orthogonal image directions (x,y). This gives robust phase estimate.
- Combine modulus and phase estimates, filter and inverse-transform.

Data Reduction, Part 2

- Look for companions in reconstructed image.
 - Visually look, using ds9
 - Use a program to identify 5-sigma peaks in IDL:
 - Look inside annuli centered on central star.
 - Determine all local maxima in the annulus "peaks"
 - Compute average peak height.
 - Source is considered a star if it is greater than 5*sigma above the average peak height.
 - Express peak heights as magnitude differences from central star
 - Plot 5-sigma detection limit as a function of separation.

WIYN Binary Discovery: A CoRoT Source

- We have done ground-based follow-up work for CoRoT and (mostly) Kepler.
- Kepler: about 10 nights of WIYN time per year.
- DSSI is helping to vet planetary candidates for binarity.
- Speckle image reeconstructions have appeared in a number of Kepler papers.

14.2-mag star shown to be binary at WIYN.

Companion Detection at WIYN: Bright Sources

Analytic Continuation

- Bright object on a black background = "finite support."
- FT is analytic.
- In the absence of noise, a unique extrapolation to arbitrarily high spatial frequencies.

Science: Orbits and Masses

Differential Photometry versus Hipparcos

Cluster Binaries: Comparing M67 and M35

Quick result from DCT

- M dwarf pair
- Mag = 15.2
- Separation: ~0.12 arcsec
- ~30 minutes of data, at 880 nm.
- Investigators:
 - Evgenya Shkolnik (Lowell)
 - Ben Montet (CfA)

Gemini-N

Used in July 2012, now here again this week for ~8 nights, 5 different science projects.

Image Reconstruction from Gemini Data

Speckles

Integrated Image

Reconstructed Image

Gemini-N: Bright Source

Analytic Continuation... KOI 1422, Mag=15.92

10.05.2014

Lowell Speckle Workshop

Gemini-N: Extended Objects

- Pluto/Charon
- ~30 minutes of observing time
- See Howell et al. in PASP
 9/2012 issue.
- Measured radii.
- Working on better image reconstruction algorithms for future projects.

Companion Detection Simulations

- Use Raghavan 2010 binary/multiple star statistics from the field.
- Simple galaxy model, star with M.S. stars only, no reddening (yet).
- Look in Kepler field at the appropriate distance range.
- Add in background giants.
- Ask with what frequency DSSI would detect Kepler star with a companion.

Gemini: Kepler Stars with Companions

KOI 3255

So Far This Work Suggests that Most Sub-Arcsecond Companions of Kepler Exoplanet Candidate Host Stars are Gravitationally Bound.