James W. Davidson Jr. Albion College

PHOTOMETRIC ANALYSIS OF BINARY STARS USING SPECKLE IMAGING

What have we seen so far?

- Speckle Imaging can provide:
 - Position angle
 - Separation
 - Magnitude difference
- Dynamical masses can be calculated for system with short-ish periods

Isochrones

- Yonsei-Yale (Y²)
- Equal age points on an evolutionary track
- Older isochrones have redder turn-off points

Color Conversions

Create calibration curves to convert colors

- Why do we need to convert colors?
 - System colors in Johnson Filter set
 - Magnitude differences in a Rochester Institute of Technology Filter set and a narrow band filter set

Calibration Curve Creation

- How do we create calibration curves?
 - Start with the Pickles Spectral Library
 - Contains 131 sample stellar spectra
 - Calculate magnitudes using filter transmission curves

$$m_x = -2.5 \log(f_x) + \text{constant}$$

where
$$f_x = \int_0^\infty SF_x AQd\lambda$$

Calibration Curve Creation

Testing Calibration

Determine Individual System Components

 Convert the system V and B – V values to instrumental values

 Combined with the speckle magnitude differences to obtain component magnitudes and colors in the speckle filters.

Converted back to the Johnson system.

Fitting Isochrones

CTIO Results

WIYN Results

CTIO Results

Table 5
CTIO Mass Results Compared with Literature Values

HIP	Photometric Results		Dynamical Results		Orbit Reference
	Mass Fraction	Total Mass	Mass Fraction	Mass Sum	
2941	0.49 ± 0.01	1.76 ± 0.01	0.42 ± 0.02	1.77 ± 0.13	Pourbaix (2000)
6564	0.49 ± 0.01	2.44 ± 0.03	0.52 ± 0.03	$2.73 \pm 0.34^{\rm a}$	Söderhjelm (1999)
7463	0.46 ± 0.01	3.15 ± 0.09		3.19 ± 0.72	Cvetković & Novaković (2006)
8998 (V,R)	0.48 ± 0.02	2.38 ± 0.05	ь	2.05 ± 0.41^{a}	Brendley & Mason (2007)
8998 (B,V)	0.48 ± 0.02	2.51 ± 0.05	27	27	"
14913 (V,R)	0.49 ± 0.002	2.61 ± 0.01	0.51 ± 0.05	$2.84 \pm 0.29^{\rm a}$	Söderhjelm (1999)
14913 (B,V)	0.48 ± 0.02	2.72 ± 0.06	77	77	39
19917	0.47 ± 0.07	4.05 ± 0.34		$5.14 \pm 0.97^{\rm a}$	Docobo & Ling (2006)
23879	0.45 ± 0.07	3.28 ± 0.28		$5.45 \pm 1.28^{\rm a}$	Scardia et al. (2008)
32677 (V,R)	0.41 ± 0.07	6.15 ± 0.54			•••
32677 (B,V)	0.39 ± 0.06	6.46 ± 0.57	77	77	52
101769	0.46 ± 0.01	3.22 ± 0.04	0.45 ± 0.02	$3.25 \pm 0.26^{\rm a}$	Alzner (1998)
111062	0.43 ± 0.01	3.18 ± 0.06		3.52 ± 0.69^{a}	Söderhjelm (1999)
113184	0.47 ± 0.02	3.04 ± 0.05		8.67 ± 2.22^{a}	Brendley & Mason (2007)
116 4 36	0.44 ± 0.01	2.08 ± 0.02		$1.67\pm0.21^{\rm a}$	Heintz (1984)

Notes.

^a The actual uncertainty is greater than that listed due to the fact that the orbital elements were published without uncertainties. The value given is solely due to parallax.

^b A value is reported in Meyer (2002); however, it is aphysical, and has not been included.

WIYN Results

Table 6
WIYN Mass Results Compared with Literature Values

HIP	Photometric Results		Dynamical Results		Orbit Reference
	Mass Fraction	Total Mass	Mass Fraction	Mass Sum	
3857	0.42 ± 0.03	2.08 ± 0.10			
17891	0.49 ± 0.06	3.43 ± 0.25		3.65 ± 0.50^{a}	Zirm & Horch (2002)
101769	0.46 ± 0.01	3.28 ± 0.04	0.45 ± 0.02	3.25 ± 0.26^{a}	Alzner (1998)
104858	0.49 ± 0.01	2.40 ± 0.02	0.484 ± 0.004	2.42 ± 0.11	Muterspaugh et al. (2008)
116578	0.48 ± 0.03	1.78 ± 0.08			
116849	0.50 ± 0.02	2.56 ± 0.05		2.50 ± 0.44	Hartkopf et al. (1996)

Note. ^a The actual uncertainty is greater than that listed due to the fact that the orbital elements were published without uncertainties. The value given is solely due to parallax.