James W. Davidson Jr. Albion College # PHOTOMETRIC ANALYSIS OF BINARY STARS USING SPECKLE IMAGING ### What have we seen so far? - Speckle Imaging can provide: - Position angle - Separation - Magnitude difference - Dynamical masses can be calculated for system with short-ish periods ### Isochrones - Yonsei-Yale (Y²) - Equal age points on an evolutionary track - Older isochrones have redder turn-off points ### Color Conversions Create calibration curves to convert colors - Why do we need to convert colors? - System colors in Johnson Filter set - Magnitude differences in a Rochester Institute of Technology Filter set and a narrow band filter set ### Calibration Curve Creation - How do we create calibration curves? - Start with the Pickles Spectral Library - Contains 131 sample stellar spectra - Calculate magnitudes using filter transmission curves $$m_x = -2.5 \log(f_x) + \text{constant}$$ where $$f_x = \int_0^\infty SF_x AQd\lambda$$ ### Calibration Curve Creation ### **Testing Calibration** ## Determine Individual System Components Convert the system V and B – V values to instrumental values Combined with the speckle magnitude differences to obtain component magnitudes and colors in the speckle filters. Converted back to the Johnson system. ### Fitting Isochrones ### CTIO Results ### WIYN Results ### CTIO Results Table 5 CTIO Mass Results Compared with Literature Values | HIP | Photometric Results | | Dynamical Results | | Orbit Reference | |---------------------|---------------------|-----------------|-------------------|-------------------------|------------------------------| | | Mass Fraction | Total Mass | Mass Fraction | Mass Sum | | | 2941 | 0.49 ± 0.01 | 1.76 ± 0.01 | 0.42 ± 0.02 | 1.77 ± 0.13 | Pourbaix (2000) | | 6564 | 0.49 ± 0.01 | 2.44 ± 0.03 | 0.52 ± 0.03 | $2.73 \pm 0.34^{\rm a}$ | Söderhjelm (1999) | | 7463 | 0.46 ± 0.01 | 3.15 ± 0.09 | | 3.19 ± 0.72 | Cvetković & Novaković (2006) | | 8998 (V,R) | 0.48 ± 0.02 | 2.38 ± 0.05 | ь | 2.05 ± 0.41^{a} | Brendley & Mason (2007) | | 8998 (B,V) | 0.48 ± 0.02 | 2.51 ± 0.05 | 27 | 27 | " | | 14913 (V,R) | 0.49 ± 0.002 | 2.61 ± 0.01 | 0.51 ± 0.05 | $2.84 \pm 0.29^{\rm a}$ | Söderhjelm (1999) | | 14913 (B,V) | 0.48 ± 0.02 | 2.72 ± 0.06 | 77 | 77 | 39 | | 19917 | 0.47 ± 0.07 | 4.05 ± 0.34 | | $5.14 \pm 0.97^{\rm a}$ | Docobo & Ling (2006) | | 23879 | 0.45 ± 0.07 | 3.28 ± 0.28 | | $5.45 \pm 1.28^{\rm a}$ | Scardia et al. (2008) | | 32677 (V,R) | 0.41 ± 0.07 | 6.15 ± 0.54 | | | ••• | | 32677 (B,V) | 0.39 ± 0.06 | 6.46 ± 0.57 | 77 | 77 | 52 | | 101769 | 0.46 ± 0.01 | 3.22 ± 0.04 | 0.45 ± 0.02 | $3.25 \pm 0.26^{\rm a}$ | Alzner (1998) | | 111062 | 0.43 ± 0.01 | 3.18 ± 0.06 | | 3.52 ± 0.69^{a} | Söderhjelm (1999) | | 113184 | 0.47 ± 0.02 | 3.04 ± 0.05 | | 8.67 ± 2.22^{a} | Brendley & Mason (2007) | | 116 4 36 | 0.44 ± 0.01 | 2.08 ± 0.02 | | $1.67\pm0.21^{\rm a}$ | Heintz (1984) | #### Notes. ^a The actual uncertainty is greater than that listed due to the fact that the orbital elements were published without uncertainties. The value given is solely due to parallax. ^b A value is reported in Meyer (2002); however, it is aphysical, and has not been included. ### WIYN Results Table 6 WIYN Mass Results Compared with Literature Values | HIP | Photometric Results | | Dynamical Results | | Orbit Reference | |--------|---------------------|-----------------|-------------------|---------------------|---------------------------| | | Mass Fraction | Total Mass | Mass Fraction | Mass Sum | | | 3857 | 0.42 ± 0.03 | 2.08 ± 0.10 | | | | | 17891 | 0.49 ± 0.06 | 3.43 ± 0.25 | | 3.65 ± 0.50^{a} | Zirm & Horch (2002) | | 101769 | 0.46 ± 0.01 | 3.28 ± 0.04 | 0.45 ± 0.02 | 3.25 ± 0.26^{a} | Alzner (1998) | | 104858 | 0.49 ± 0.01 | 2.40 ± 0.02 | 0.484 ± 0.004 | 2.42 ± 0.11 | Muterspaugh et al. (2008) | | 116578 | 0.48 ± 0.03 | 1.78 ± 0.08 | | | | | 116849 | 0.50 ± 0.02 | 2.56 ± 0.05 | | 2.50 ± 0.44 | Hartkopf et al. (1996) | **Note.** ^a The actual uncertainty is greater than that listed due to the fact that the orbital elements were published without uncertainties. The value given is solely due to parallax.