

International Centre for Radio Astronomy Research

Little Blue Spheroids and Disk Evolution in GAMA

Amanda Moffett with Simon Driver and the GAMA team

Mayer and N-body shop simulation stills – gas-rich disk building

Mayer and N-body shop simulation stills – gas-rich disk building

Disk Regrowth and Blue Early-type Galaxies

- ET galaxies with blue colors generally thought of as small population (e.g., Schawinski+ 2009)
- Frequency increases at low stellar mass
- Gas reservoirs and specific star formation rates -> significant stellar disk growth potential (KGB; Wei+ 2010)
- ~60% display UV bright disks (Moffett+ 2012)
- Objects in transition, (re)building disks?

Kannappan, Guie, & Baker 2009

Moffett+ submitted

GAMA in Brief

- Spectroscopic and vastly multi-wavelength survey of ~300,000 galaxies
- Mature and constantly growing database of derived data products
 - variety of aperturematched photometry
 - redshifts and spectral line measurements
 - stellar mass estimates
 - morphology and structural fits

GAMA Scientific and Strategic Advisory Committee

MG member	Dr. Ivan Baldry	Liverpool JMU
	Dr. Steven Bamford	U of Nottingham
	Prof. Joss Bland- Hawthorn	U of Sydney
Science Coordinator	Dr. Sarah Brough	AAO
MG member	Dr. Michael Brown	Monash U
	Prof. Michael Drinkwater	U of Queensland
Principal Investigator	Prof. Simon Driver	ICRAR / U of St Andrews
Principal Investigator	A/Prof. Andrew Hopkins	AAO
Project Manager	Dr. Joe Liske	ESO
	Dr. Jon Loveday	U of Sussex
	Dr. Martin Meyer	UWA
Head of SSAC	Dr. Peder Norberg	Durham U
	Prof. John Peacock	U of Edinburgh
Science Coordinator	Dr. Aaron Robotham	ICRAR / U of St Andrews
	Dr. Richard Tuffs	MPIfK

MG = Management Group

GAMA Members ...so many we just can't fit! see http://www.gama-survey.org/team/

GAMA in Brief

- Spectroscopic and vastly multi-wavelength survey of ~300,000 galaxies
- Mature and constantly growing database of derived data products
 - variety of aperturematched photometry
 - redshifts and spectral line measurements
 - stellar mass estimates
 - morphology and structural fits

GAMA Galaxy Structure Efforts

- Structural Investigation of Galaxies via Model Analysis (SIGMA) - GALFIT wrapper (Kelvin+ 2012)
- Lange+ 2014 (submitted) mass-size relations for ~12,000 galaxy volume-limited sample (SDSS and VIKING)
- Bulge/disk decompositions and extension to smaller/ higher redshift objects with KiDS/HST data ongoing

- LBSs are a visual morphology class in GAMA
- Found to be ~7% of volume-limited sample with 0.025<z<0.06 and Mr
 < -17.4 (Kelvin+ 2014)
- New GAMA II
 classifications ~half mag
 deeper yields nearly 900
 LBSs

509917 144197

- LBSs are a visual morphology class in GAMA
- Found to be ~7% of volume-limited sample with 0.025<z<0.06 and Mr
 < -17.4 (Kelvin+ 2014)
- New GAMA II
 classifications ~half mag
 deeper yields nearly 900
 LBSs

- Colors imply star forming & SSFRs comparable to spirals
- In mass-size space, intermediate between Es and spirals

masses and extinction-corrected colors Taylor+ 2011

- Colors imply star forming & SSFRs comparable to spirals
- In mass-size space, intermediate between Es and spirals

 $H\alpha$ SFRs Hopkins+ 2013/Gunawardhana+ 2013

- Colors imply star forming & SSFRs comparable to spirals
- In mass-size space, intermediate between Es and spirals

preliminary results from Lange+, in prep.

What are they?
Primordial objects? Fading remnants? Objects in transition?

Environments of LBSs

- LBS frequency increases for low group halo masses
- Overall LBS pair fraction lower than for Es or spirals (Robotham + 2011 pair IDs) -> some recent mergers?
- ~20-30% LBSs in voids,
 ~40% in tendrils, higher fractions than for E/Sp
 (Alpaslan+ 2014 cat.)

group catalog Robotham+ 2011

Environments of LBSs

- LBS frequency increases for low group halo masses
- Overall LBS pair fraction lower than for Es or spirals (Robotham + 2011 pair IDs) -> some recent mergers?
- ~20-30% LBSs in voids,
 ~40% in tendrils, higher fractions than for E/Sp
 (Alpaslan+ 2014 cat.)

group catalog Robotham+ 2011

Environments of LBSs

- LBS frequency increases for low group halo masses
- Overall LBS pair fraction lower than for Es or spirals (Robotham + 2011 pair IDs) -> some recent mergers?
- ~20-30% LBSs in voids,
 ~40% in tendrils, higher fractions than for E/Sp
 (Alpaslan+ 2014 cat.)

group catalog Robotham+ 2011

Little Blue Spheroids with KiDS

- Kilo Degree Survey (PI Konrad Kuijken)
 - VLT Survey Telescope with OmegaCAM - 1 sq. degree FOV
 - ugri imaging ~2 mag deeper than SDSS
 - KiDS typical seeing ~0.6" in r, compare to SDSS r ~1.3"
- First 50 square degrees now public - DR1, with scattered GAMA coverage

LBS Model Fits with KiDS

 By Bayesian information criterion (BIC) find ~60% prefer 2 components

KiDS

LBS Model Fits with KiDS

 By Bayesian information criterion (BIC) find ~60% prefer 2 components

KiDS

KiDS Model Fit Early Results

LBS bulge n similar to spirals, frequently pseudobulges
- no clear single formation mechanism (e.g., review Graham 2013)

KiDS Model Fit Early Results

For two-component LBSs, disk n distribution differs from spiral distribution

KiDS Model Fit Early Results

LBS B/D luminosity ratio distribution intermediate between E/Sp distributions

Summary

- GAMA's "Little Blue Spheroids" are typically low stellar mass
 & star-forming; many are likely multi-component systems
- LBSs largely inhabit environments outside densest galaxy concentrations, implying these conditions are important for their formation and persistence
- LBSs have transitional structural characteristics, with bulge n similar to typical spirals but with differing disk n and B/D ratios intermediate between E/Sp populations
- History and evolutionary future of LBSs unclear fading or growing? -> examine stellar population diagnostics, interaction indicators, quantify typical gas reservoirs
- Beyond the LBSs full KiDS imaging coverage will expand GAMA structural sample significantly, allowing B/D fits on deeper/higher-resolution data