MASSIVE QUIESCENT DISKS AT HIGH-REDSHIFT

Elizabeth J. McGrath (Colby College)

With the CANDELS team, including: Aurora Kesseli, Gagandeep Anand, Arjen van der Wel, Guillermo Barro, Yicheng Guo, Stijn Wuyts, Joel Primack, Daniel Ceverino, Avishai Dekel

Exponential Disks Workshop 2014, Lowell Observatory

GALAXY BIMODALITY

Faber et al. (2007)

SED-FITTING OF ACTUAL HIGH-Z QUENCHED GALAXIES

EJM, et al. (2007)

4C15.55 ER2: THE CASE OF A MASSIVE QUIESCENT DISK

QUIESCENT DISKS

Even more examples at higher redshift $(z\sim2.5)$:

Stockton, EJM, et al. (2008)

THE PROBLEM OF QUIESCENT DISKS

• Formation through Major Mergers?

• Requires extremely gas-rich progenitors, and even then, difficult to form low bulge fraction disks.

- Formation through cold streams?
 - Streams build-up angular momentum of disk.
 - Can be clumpy or smooth.

Dekel et al. (2009)

COLD STREAMS AND VIOLENT DISK INSTABILITIES

- Narrow, cold streams penetrate to the center of dark matter halo.
- High gas density = disk unstable. Clumps form: violent disk instability (VDI)
- Torques/ Dynamical friction = clumps (and gas) migrate to center.
- VDI can form compact objects easier than galaxy mergers.

Ceverino, Dekel, Bournaud (2010)

WHAT CAN WE LEARN FROM QUIESCENT DISKS?

- Until recently, sample sizes of high-z quiescent galaxies with high-res imaging have been small.
 - How common are they?
 - How much of the mass is within a typical bulge vs. amount in the disk?

THE POWER OF CANDELS

- Wide Program: 2 orbit depth, ~ 0.2 sq. deg.
 - EGS, COSMOS, & UKIDSS/UDS
- **Deep** Program: 12 orbit depth, ~0.04 sq. deg.
 - GOODS-S, GOODS-N

THE CANDELS PROJECT

 Particularly well-suited to the study of quenched or "passive" galaxies at z~2 that are essentially invisible at shorter, optical wavelengths.

UVJ DIAGRAM: QUIESCENT GALAXY SELECTION

DETAILED MORPHOLOGY STUDIES

- Real galaxies aren't as simple as pure disks or pure ellipticals.
- By convention, Sersic
 n<2.5 = disk-like
 n>2.5 = spheroidal
- With good data we can decompose an image of a galaxy into its subcomponents

QUIESCENT DISKS

• Closer inspection of "high-Sersic", massive, quiescent galaxies has revealed a number of disk-dominated galaxies.

EXPANDING THE SAMPLE WITH CANDELS

- Using CANDELS, we can now extend previous work to • much larger sample sizes
 - Results from UDS & COSMOS fields ($1 \le z \le 3$, $M_* \ge 10^{11} M_{sun}$) ۲

n<2.5

galaxies have B/T < 0.5

Bruce+, EJM, et al. (2014)

HOW COMMON ARE QUIESCENT DISKS?

• Redshift bins spaced equally in time.

EJM, Kesseli, et al.(2014)

SEARCH FOR A QUENCHING PARAMETER

• Spheroid formation may not be the trigger that quenches star-formation, but just an end result.

THE PROBLEM OF QUIESCENT DISKS

- What quenches the star-formation after disk is assembled?
 - Leading theories:
 - 1. AGN feedback (internal process)
 - Hydrodynamic & Radiative processes expel and heat gas
 - To fuel black hole, need to funnel gas to the center of the galaxy (e.g., mergers, violent disk instabilities?, bar instability?)
 - 2. Morphological Quenching (internal process)
 - Growth of bulge stabilizes disk against gravitational instabilities
 - 3. Halo quenching (external process)
 - Dark matter halo becomes massive enough that it shock-heats gas, preventing further collapse.

fast

slow

GALAXY EVOLUTION REVEALED BY STRUCTURAL CHANGES

- Compact blue nuggets as progenitors to massive red nuggets
- "Fast track" vs."Slow track"

Barro et al. (2014)

SUMMARY

- Massive quiescent disks are common at high-z.
- Mechanism other than major merging is required to build up early massive disks. Cold streams are one likely possibility.
- Need a mechanism to shut down star formation. Possibly AGN, but how to feed the black hole without mergers?
 - Violent disk instabilities? (Can VDI funnel enough gas to the center without compactifying galaxy too much?)
 - Possibly slower processes like morphological quenching and halo quenching?
- Mergers important later in "puffing-up" dense galaxies to place them on local size-mass scaling relations and in converting disks to spheroids.