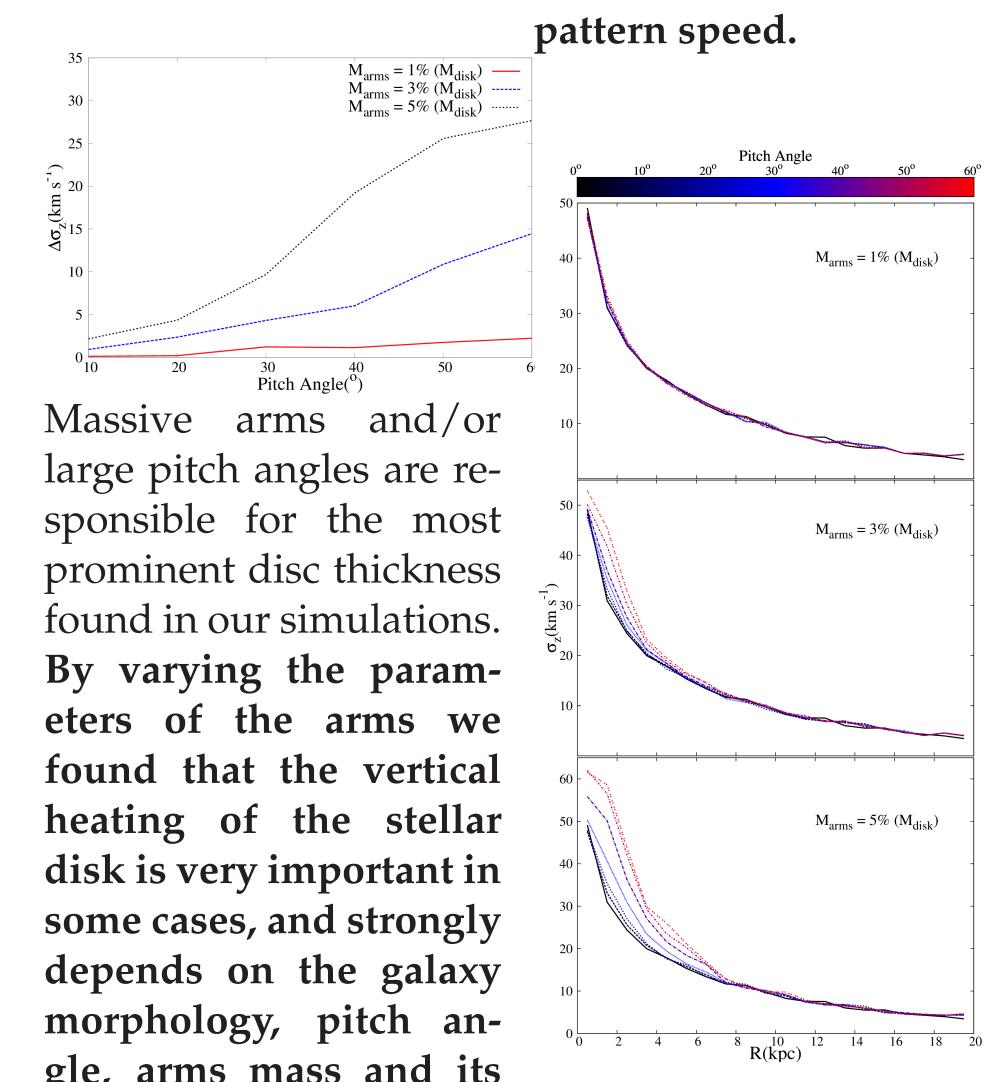


Contribution of Spiral Arms to the Thick Disk along the Hubble Sequence

L. A. Martinez-Medina¹, B. Pichardo², A. Pérez-Villegas³ & E. Moreno²

barbara@astro.unam.mx mperez@astro.unam.mx Imedina@fis.cinvestav.mx ¹Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F., México ²Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70–264, 04510, México, D.F., D.F., México ³ Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 3–72, 58090 Morelia, México The Formation and Evolution of Exponential Disks in Galaxies, October 5 - 9, 2014 Flagstaff, Arizona

instituto de astronomía

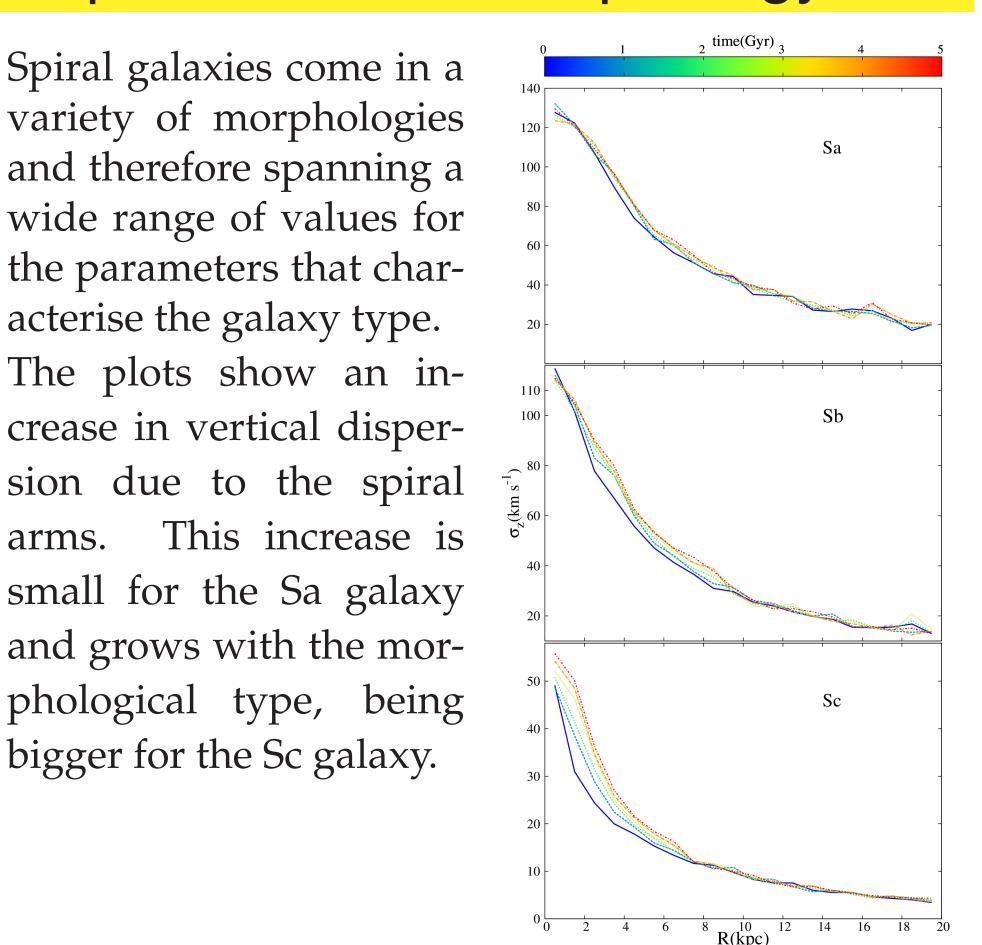

Unam

Abstract

The first mechanism invoked to explain the existence of the thick disk in the Milky Way Galaxy, were the spiral arms. Up-to-date work summon several other possibilities that together seem to better explain this component of our galaxy, but the contribution of each one has not been straightforward to quantify.

In this work, we present a first comprehensive study of the effect of spiral arms in the formation of thick disks, as going from early to late type disk galaxies, in an attempt to characterize and quantify this specific mechanism in galactic potentials. To this purpose, we perform numerical simulations of test particles in a 3D spiral galaxy potential of normal spiral galaxies (from early to late types). By varying the parameters of the arms we found that the vertical heating of the stellar disk is very important in some cases, and strongly depends on the galaxy morphology, pitch angle, arms mass and its pattern speed. The later is the galaxy type, the larger is the effect on the disk heating. We applied this study to the specific example of the Milky Way Galaxy. From this we deduce that the effect of spiral arms of a MW potential, on the dynamical vertical heating of the disk is negligible, unlike later galactic potentials for disks.

Arms Mass and Pitch Angle


Galaxy Model

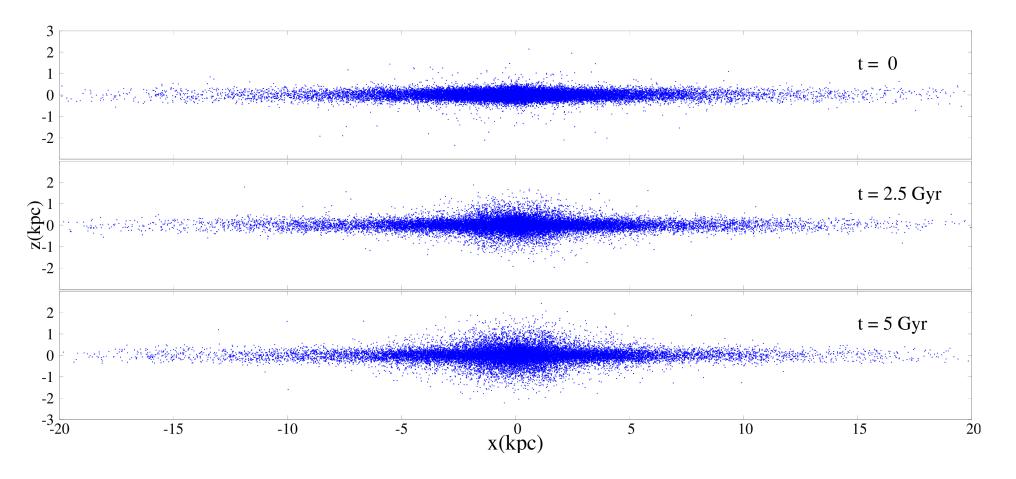
We ran test particle simulations on a 3-D galactic potential that models normal spiral galaxies (Sa, Sb and Sc). The model includes an axisymmetric component (Bulge, Disk, Dark Matter Halo) (Allen & Santillán 1991), plus a detailed potential of spiral arms.

For the arms we use a bisymmetric selfgravitating potential, PERLAS model (Pichardo et al. 2003). This potential consists of individual inhmogeneous oblate spheroids superposed along a logarithmic spiral locus (Roberts 1979). This is a more realistic potential since it is based on a density distribution and considers the force exerted by the whole spiral structure, obtaining a more detailed shape for the gravitational potential, unlike a 2-D local arm such as the tight winding approximation (TWA).

Dependence on Morphology

Spiral galaxies come in a variety of morphologies and therefore spanning a wide range of values for the parameters that characterise the galaxy type. The plots show an increase in vertical dispersion due to the spiral arms. This increase is small for the Sa galaxy and grows with the morphological type, being

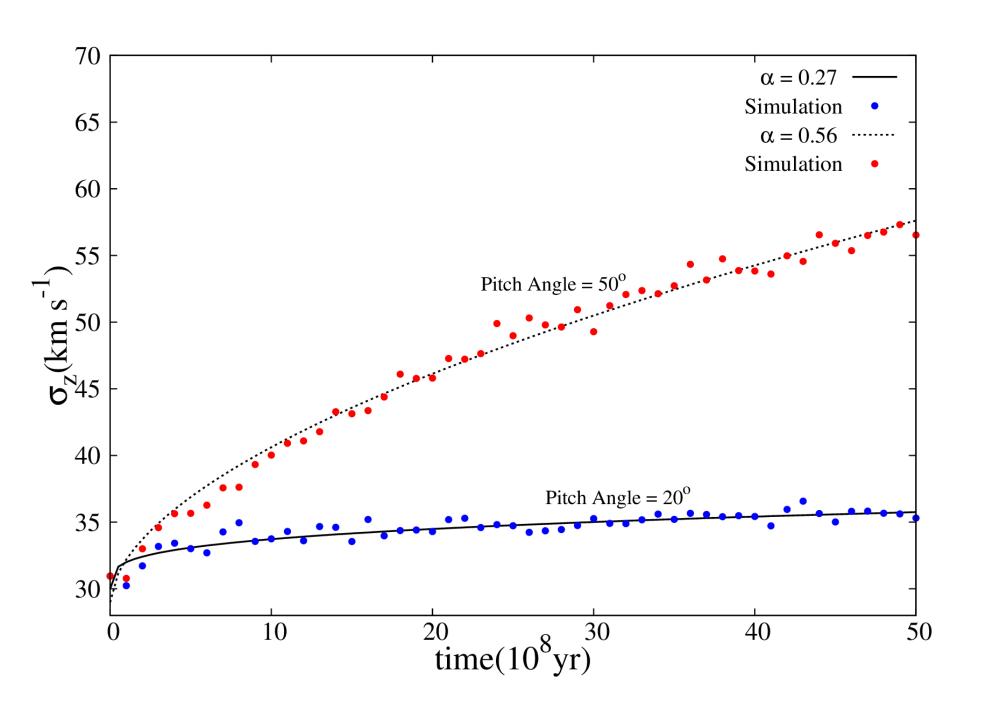
gle, arms mass and its


$\sigma_z \propto T$ relationship

- It is known that the age and velocity dispersion of stars are correlated. This has been established from observations in the solar neighbourhood (Holmberg 2009).
- The σ *t* relation shows a smooth, general increase of the velocity dispersion with time and is best parametrized by a power

The parameters used to model normal spiral galaxies (Sa, Sb and Sc) are presented in the next Table (Pérez-Villegas 2013).

Table: Parameters of the Galactic Models				
Parameter		Value		Reference
	Sa	Sb	Sc	
Axisymmetric Components				
D	0.9	0.4	0.2	1,2
Н	0.07	0.09	0.1	2,3
rve ($\rm km \ s^{-1}$)	320	250	170	4
°M _☉)	12.8	12.14	5.10	3
⁰M _☉)	11.6	4.45	1.02	M_B/M_D based
²M _☉)	1.64	1.25	0.48	M_D/M_H based
Scale-lengths of the Axisymmetric Components (kpc)				
b ₁	2.5	1.7	1.0	
a ₂	7.0	5.0	5.3178	
b ₂	1.5	1.0	0.25	
a3	18.0			
· · · · ·				
	Logarithmic		mic	5,9,10
nber		2		6
gle (°)	8-40	9-45	10-60	4,7
	1-5%			9
gth (kpc)	7	5	3	disk based
$1 { m s}^{-1} { m kpc}^{-1}$	-30	-25	-20	5,8
tion (kpc)	3.0	2.29	2.03	
ion (kpc))	10.6	11.14	8.63	
it (kpc)	3.0	2.29	2.03	\sim ILR position based
nit (<i>kpc</i>)	10.6	11.14	8.63	\sim CR position based
	er D_H $Ve (km s^{-1})^{0}M_{\odot})^{0}M_{\odot})^{0}M_{\odot})^{2}M_{\odot})^{2}M_{\odot})$ Scale-lengths b_1 a_2 b_2 a_3 mber $gle (^{\circ})$ gth (kpc) $a s^{-1} kpc^{-1})$ tion (kpc) ion (kpc)) it (kpc)	er Sa Axisyr D 0.9 H 0.07 ve (km s^{-1}) 320 ${}^{0}M_{\odot}$) 12.8 ${}^{0}M_{\odot}$) 12.8 ${}^{0}M_{\odot}$) 11.6 ${}^{2}M_{\odot}$) 11.6 ${}^{2}M_{\odot}$) 1.64 Scale-lengths of the b_1 2.5 a_2 7.0 b_2 1.5 a_3 18.0 mber gle (°) 8-40 mber gle (°) 7 ${}^{1} {}^{s^{-1}} {}^{k} {}^{c^{-1}}$) -30 tion (kpc) 3.0 ion (kpc) 3.0 in (kpc) 3.0	er Value Sa Sb Axisymmetric Co D 0.9 0.4 H 0.07 0.09 ve (km s^{-1}) 320 250 $^{0}M_{\odot}$) 12.8 12.14 $^{0}M_{\odot}$) 12.8 12.14 $^{0}M_{\odot}$) 11.6 4.45 $^{2}M_{\odot}$) 1.64 1.25 Scale-lengths of the Axisymmetric b_1 2.5 1.7 a_2 7.0 5.0 b_2 1.5 1.0 a_3 18.0 16.0 Spiral Articles Spiral Articles 1.5% gth (kpc) 7 5 1 s ⁻¹ kpc ⁻¹) -30 -25 tion (kpc) 3.0 2.29 ion (kpc) 10.6 11.14 it (kpc) 3.0 2.29	er Value Sa Sb Sc Axisymmetric Components D 0.9 0.4 0.2 H 0.07 0.09 0.1 ve (km s ⁻¹) 320 250 170 ${}^{0}M_{\odot}$) 12.8 12.14 5.10 ${}^{0}M_{\odot}$) 12.8 12.14 5.10 ${}^{0}M_{\odot}$) 11.6 4.45 1.02 ${}^{2}M_{\odot}$) 1.64 1.25 0.48 Scale-lengths of the Axisymmetric Components b_1 2.5 1.7 1.0 a_2 7.0 5.0 5.3178 b_2 1.5 1.0 0.25 a_3 18.0 16.0 12.0 Spiral Arms Logarithmic nber 2 sgle (°) 8-40 9-45 10-60 1-5% gth (kpc) 7 5 3 n s ⁻¹ kpc ⁻¹) -30 -25 -20 tion (kpc) 3.0 2.29 2.03 it (kpc) 3.0 2.29 2.03


¹ Weinzirl et al. (2009). ² Block et al. (2002). ³ Pizagno et al. (2005). 4 Ma et al. (2000). ⁵ Grosbøl & Patsis (1998). ⁶ Elmegreen & Elmegreen 2014. ⁷ Kennicutt (1981). ⁸ Gerhard 2011. ⁹ Pichardo et al. (2003). ¹⁰ Seigar For a Sc galaxy we can see the heating directly on the spatial distribution of the stellar disk particles. In this x - z projection of the stellar distribution we can see a thickening in the disk during the temporal evolution.

The Pattern Speed Ω

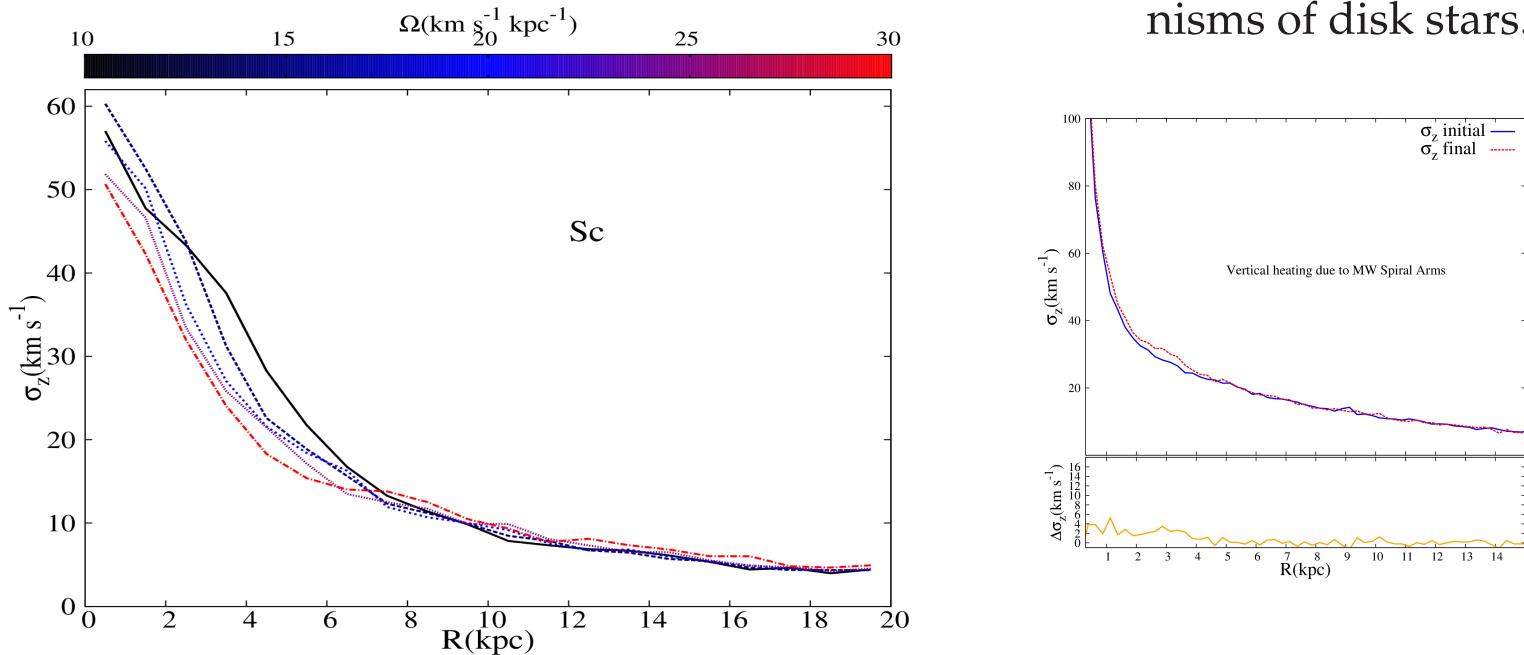
The vertical heating is greater for slow rotating arms

law $\sigma_z \propto t^{\alpha}$ with $0.27 \leq \alpha \leq 0.56$.

The Milky Way

In the case of the Milky Way we found that:

- The galactic spiral arms by their own are incapable of induce any thickness in the disk, the increase in σ_z is negligible.
- If we add the galactic bar the vertical


Initial Conditions

The initial stellar distribution follows the density profile of Miyamoto & Nagai (1975). This to avoid any transient effects induced by differences between the initial particle distribution and the imposed disk potential.

The particles are distributed in the velocity space by introducing a dispersion as a function of *R* in response to the background potential.

With this implementation the initial stellar disk has been proved stable under the axisymmetric components of the model.

and decrease for those that rotate faster. Small values of Ω allow the spiral arms to heat more efficiently the stellar disc, independently of galaxy type.

velocity dispersion increase considerably, mostly within the region covered by the bar. This means that for the Milky Way the bar is an important heating mechanisms of disk stars.

 σ_z Initial – σ_z Final –

/ertical heating due to MW Spiral Arms + Bar