Chemically tagging the Milky Way Prospects and issues Sofia Feltzing Lund Observatory

What is it?

- Builds on the understanding of
 - stars as time-capsules
 - ★ Solar-like stars retain, in their atmospheres, the same composition of elements as the gas cloud from which they formed.

- each star formation event has a unique signature
 The chemistry in each star formation event is influenced by a unique set of chemical enrichment events.
- star clusters dispers in the Galactic potential

Freeman & Bland-Hawthorn 2002 ARA&A <u>40</u> 487 Bland-Hawthorn et al. 2010 ApJ <u>713</u> 166

What to do with it?

- Complementary (and necessary) information to understand the Milky Way as a galaxy.
- Formation signatures are lost in diffusion of orbits but chemical signatures remain. $\int_{10}^{15} \frac{A_{sp} = 900, \Omega'_{sp} = 28}{M_{bar} = 9.8 \times 10^9, \Omega_{bar} = 40}$

Position of solar siblings after evolution in a non-axisymmetric Galactic potential Liu et al. (submitted), simulation by Carmen Martínez-Barbosa.

 Hence, use it to disentangle the whole tormation history of the Milky Way.

De Silva et al. 2008 arXiv:0810.2287

Johnson et al. 2014 ApJ 148 67

Does it work?

In summary, systematic differences between the stars and the Sun could arise due to the ...

- (i) analysis techniques (equivalent widths vs. spectrum synthesis)
- (ii) stellar parameters
- (iii) adopted grid of model atmospheres
- (iv) treatment of line formation (LTE vs. NLTE)
- (v) adopted gf-values
- (vi) adopted line lists
- (vii) spectral resolution
- (viii) signal-to-noise ratio
- (ix) problems with the spectrograph
- (x) adopted solar spectrum (sky, Moon, moons of other planets, asteroids, solar atlas)
- (xi) data reduction
- (xii) determination of the continuum
- (xiii) blends
- (xiv) equivalent width measurements
- (xv) adopted solar abundances

Meléndez et al. 2013 IAU Symp. 298, Eds. Feltzing, Zhao, Walton, Whitelock

Is it realistic to hope?

Better data (S/N, larger λ -range, # lines)

Edvardsson, et al. 1993 A&A <u>275</u> 101 Bensby et al. 2014 A&A <u>562</u> A71

Plot: Feltzing & Chiba 2013 NewAR 57 80

Is it realistic to hope?

18 Sco

$\overline{T_{\rm eff}}$	Error	$\log g$	Error	[Fe/H]	Error	Source
(K)	(K)	(dex)	(dex)	(dex)	(dex)	
5823	6	4.45	0.02	0.054	0.005	This work
5816	4	4.45	0.01	0.053	0.003	Ramírez et al. (2014b)
5824	5	4.45	0.02	0.055	0.010	Monroe et al. (2013)
5810	12	4.46	0.04	0.05	0.01	Tsantaki et al. (2013)
5831	10	4.46	0.02	0.06	0.01	Meléndez et al. (2012)
5817	30	4.45	0.13	0.05	0.05	da Silva et al. (2012)
5826	5	4.45	0.01	0.06	0.01	Takeda & Tajitsu (2009)
5840	20	4.45	0.04	0.07	0.02	Meléndez et al. (2009)
5848	46	4.46	0.06	0.06	0.02	Ramírez et al. (2009a)
5818	13	4.45	0.02	0.04	0.01	Sousa et al. (2008)
5834	36	4.45	0.05	0.04	0.02	Meléndez & Ramírez (2007)
5822	4	4.451	0.006	0.053	0.004	Weighted mean from the literature

Comparison of Stellar Parameters of 18 Sco

Meléndez et al. 2014 ApJ 791 14

			S	of Stellar Para	- 400 - 200 0 - 200		st				log g Recom. – Referenc			₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	
$\overline{T_{\rm eff}}$	Error	log g	Error	[Fe/H]	Err or	Source									
(K)	(K)	(dex)	(dex)	(dex)	(dex)			28 A 2		60333309 - s + 1			~~. <u>~</u> . <u>-</u> .	~~~~~~	e∢
5823	6	4.45	0.02	0.054	0.005	い。 「 で あ る の 条 に い い に い に い に い に し い に し い に し い に し い に し し い に し し い に し し い し し い こ い し い し い し い い い し い い い い い い い い い い い い い	₽⋜⋛⋛⋣⋈	ő, ⊡K,	n D O O			N N N N N N N N N N N N N N N N N N N		╝ _┍ ┋╤╤╖	ည် စပ
5816	4	4.45	0.01	0.053	0.003	Ramírez et at (20 14b)		:ଠିର୍ବ	I efall	City of the ase	s from >	0 2 dex to			FO
5824	5	4.45	0.02	0.055	0.010	Ź₩₩₩₽₩₩₽Ŏ₽							≤ ± α ∞ Π = α		<u>–</u> a
5810	12	4.46	0.04	0.05	0.01	Tsantak et al. (2013)	ш — ——е	νωΞ	ω I					шш=-	<u>၂</u> က ြ
5831	10	4.46	0.02	0.06	0.01	Meléndez et al. (2012)									
5817	30	4.45	0.13	0.05	0.05	da Silva et al. (2012)									
5826	5	4.45	0.01	0.06	0.01	Takeda & Tajitsu (2009)					Benchmarl	ks iDR2			
5840	20	4.45	0.04	0.07	0.02	Meléndez et al. (2009)									
5848	46	4.46	0.06	0.06	0.02	Ramírez et al. (2009a)	_		1						
5818	13	4.45	0.02	0.04	0.01	Sousa et al. (2008)	$\overline{\mathbf{x}}$	<u> </u>	-						
5834	36	4.45	0.05	0.04	0.02	Melendez & Ramirez (2007)	Θ	5 7	-						
5822	4	4.451	0.006	0.053	0.004	weighted mean from the literature	ַם פ		-			т	-		

Beware of the sheep and sheep-goat effect

Gustafsson (2004) Carnegie Observatories Astrophysics Series 4. Eds. McWilliam & Rauch

Smiljanic et al. 2014 arXiv1409.0568 Meléndez et al. 2014 ApJ <u>791</u> 14

Tagging: applications

- Several studies have started to develop the analysis tools needed for chemical tagging and PC analysis in large data-sets.
 - Ting et al. 2012 MNRAS <u>421</u> 1231 PC, various, incl. dSphs
 - Andrews et al. 2012 AcA <u>62</u> 269 PC, Bensby et al. 2014
 - Mitschang et al. 2014 MNRAS <u>438</u> 2753 Tagging, Bensby et al. 2014
 - Blanco-Cuaresma et al. in prep. Tagging, various incl. clusters, Gaia-ESO

Inconclusive Due to small samples Two (old) examples

Dissolving cluster HR1614

De Silva et al. 2007 AJ <u>133</u> 694 Feltzing & Holmberg 2000 A&A <u>357</u> 153

Dynamical structure Hercules (in yellow)

Not all "groups" dispersing are stellar clusters, some are dynamical features

Bensby et al. 2007 ApJL 655 L89

What sort of data is available? A few of examples

Nieva and Przybilla BA-type supergiants + B-stars & HII-regions (Esteban+ 2005)

Summary

- Most high precision data still confined to solar neighbourhood or Galactic bulge
- Chemical tagging has been applied in two ways
 Simple "by-eye" tagging for specific project successful
 - Detailed analysis of larger samples un-successful so far
- We need surveys

What should surveys deliver?

- Precision good enough to be able to detect the features we are interested in
 - Note we do not necessarily know what we are looking for
- Samples large enough to address the questions we want to ask to the data
 - Normally this ends up with 10⁵ to several 10⁶ stars, depending on the problem

Size of features

We saw earlier that the size of features seen in abundance trends are of ~0.2 dex, or less

Plot based on data from Klaus Furhmann's studies (priv. comm.)

Precision vs # stars

Low probability of false detection (p = 0.01)

Lindegren & Feltzing 2013 A&A 553 A94

Precision vs # stars

Summary

- Large samples are good
- But good precision is <u>still</u> required
- Cheer number does not compensate for poor data
- You must decide what precision your problem needs

Surveys that tag

- Currently available surveys include
 - SEGUE (SDSS 2.5m, Apache point)
 - RAVE (UK Schmidt, AAO)
 - APOGEE (SDSS 2.5m, Apache point)
 - Gaia-ESO Survey (VLT, Paranal)
 - GALAH on HERMES (AAT, AAO)
- Future surveys include those performed using
 - MOONS (VLT, Paranal)
 - WEAVE (WHT, La Palma)
 - 4MOST (VISTA, Paranal)

Surveys that tag

MOONS

NIR

NIR multifibre spectrograph being built for VLT R ~ 5000 (0.64-1.8 µm) R ~ 9000, 20 000, 20 000 (0.7-0.9, 1.17-1.26, 1.52-1.63 µm)

1024 fibres

Being built by consortium lead by ATC, UK

PI: Michelie Cirasuolo

http://www.roe.ac.uk/ ~ciras/MOONS/VLT-MOONS.html

Cirasuolo et al (SPIE, 2014)

WEAVE

Multifibre spectrograph being built for WHT R ~20 000 and R ~5000 800 fibres (switches R) Gaia follow-up (4MOST in the North), extra-galactic science Netherlands, UK, Spain, France, Italy Project scientist: Scott Trager http://www.ing.iac.es/weave/

4MOST

Multifibre spectrograph to go on VISTA R ~20 000 and R ~5000 800 + 1600 fibres Gaia and eROSITA follow-up 10-20 million LR stars 1-2 million HR stars LR to V~20 w SNR 10/Å HR~16.5/17 w SNR of 170/Å PI: Roelof de Jong http://www.4most.eu

de Jong et al (SPIE, 2014)

λ-coverage (optical)

Optimizing 4MOST

Line-list wetted for science

Wavelength (nm)

Ruchti et al. (to be submitted)

But, will it really work?

- Well ...
- It does seem to work well when you compare apples with apples.
- What about the apples and oranges? That is less certain.

Spanners in the work

- Önehag et al. (2014) find tentative evidence that selective diffusion occurs in solar type stars at MS and TOP in M67
 - Variations up to 0.05 dex along the evolutionary sequence for some heavy elements
- NLTE, 3D effects can be severe, e.g., Ruchti et al. (2013)
 (2013)

Önehag et al. 2014 A&A <u>562</u> A102 Ruchti et al. 2013 MNRAS <u>429</u> 126

Summary

- Apples and oranges ...
- Get your parameters right or select only one type of star (and consider NLTE, 3D ...)
- How unique is a single star formation event? Are we "only" going to be able to recognise ensembles of star formation events?

But see Feng & Krumholz 2014 Nature 513 523

