Breaks in Disk Profiles: Observational Perspectives

Peter Erwin
Max-Planck-Institute for Extraterrestrial Physics

with: Michael Pohlen, John Beckman, Leonel Gutiérrez, Rebeca Aladro, Dave Wilman, Sandesh Kulkarni
What Do We Mean by “Break”?

1. Two extended exponential zones in disk with transition between them (the break in “broken exponential”)

2. Where outer exponential gives way to *deficit* relative to its inward extrapolation (inner region may not be exponential!)
Three main classes of profiles

Type I:
Single-exponential
(Freeman 1970)

Type II:
includes “Truncations”
(Freeman 1970; van der Kruit & Searle 1981)

Type III:
“Antitruncations”
(Erwin+2005)

No Break

“Downbending” Break

“Upbending” Break
Type I (No Break): Simplest Case

Classic single-exponential disk (e.g., Freeman 1970)

21% of local bright ($M_B < -18.4$) S0–Sm galaxies; most common in S0–Sa

Some, at least, are quite extended: no breaks visible out to limits of ~ 8.5 scale lengths (Barton & Thompson 1997; Hunter+2011) and even 10–11 scale lengths (Weiner et al. 2001; Bland-Hawthorn et al. 2005; Vlajic et al. 2011)
Type II Profiles (including “Truncations”)

- Freeman 1970: Some disks have inner “deficit” relative to outer exponential = “Type II”

- van der Kruit & Searle (1981): edge-on disks are not single-exponential out to detection limits — instead, they are “truncated”

- Pohlen+2002: deep imaging of 3 face-on spirals shows broken-exponential profiles: break = “truncation”

- SO: Lump them together as “downbending breaks”: profile is shallow inside break, steeper outside
Type II Examples (Face-on and Edge-on)

NGC 5923

UGC 9837

Pohlen+2002 (face-on spirals)

de Grijs+2001 (Edge-on spirals)

Muñoz-Mateos+2013: $i = 40$ S0
Type II Profiles: Oddities

Type II.i

Break is ~ at end of bar
Similar to some N-body simulations

Only ~5% of local S0–Sdm (Gutiérrez+11; Laine+14)

Type II-FI

Inner profile is flat or even increasing before break;
late-type dwarfs only(?) (Hunter & Elmegreen 2006; Herrmann+2013)
Type II-OLR: Linked to Outer Rings (and Outer Lindblad Resonance?)

“Extreme” Outer Rings

Outer rings believed to result of gas interacting with bar’s Outer Lindblad Resonance (OLR).

In ~ 45% of barred S0-Sb Type II profiles, break coincides with a visible outer ring.

Laine+14: 48% of S0–Sab Type II breaks correspond with outer rings/pseudorings/“ringlenses”

“Normal” Outer Rings
Muñoz-Mateos+2013 (S4G Spitzer IRAC)

R_{brk} is typically $\sim 2 \, R_{\text{bar}}$, consistent with bar OLR

[or ~ 3–4 R_{bar}, consistent with coupled spiral OLR; Debattista+2006]

Laine+2014 (also S4G data)

R_{brk} correlates *very* well with outer rings (not with inner rings)
Classical Truncations

In some barred galaxies, break is clearly *outside* outer ring (or outside expected OLR radius)

*Type II also in *unbarred* galaxies* — and late-type spirals, where bars are small and outer rings are rare

Probably different phenomenon from OLR (or other resonance) breaks

Since “truncations” seen by van der Kruit and collaborators in 1980s–2000s are typically at large radii in late-type spirals, we call these “classical truncations”

Best explanation: star-formation threshold + radial scattering of stars
Hα Galaxy Groups Imaging Survey (HAGGIS)

PE, David Wilman, Sandesh Kulkarni (MPE), Leonel Gutierrez (UNAM), John Beckman (IAC)

Hα imaging of ~ 100 nearby (z ~ 0.02–0.05) Yang+2007 galaxy groups, spanning halo masses 10^{12}–10^{14} M$_{\odot}$ (~500 galaxies)

INT-WFC (La Palma) and ESO/MPI-2.2m WFI (~0.8” FWHM)

Narrow-band Hα and continuum filters + calibration with SDSS spectra
SB Profile Breaks = Star Formation Breaks

Simulations (e.g., Roskar+2008; Sánchez-Blázquez+2009) show break in SFR ~ break in stellar continuum

See also:
Christlein+2010; Herrmann+2013

Hunter+2011
Are Breaks Purely a Stellar Population Effect?

Bakos+2008: $g-r$ color profiles for late-type spirals:
Type II profiles tend to show *blue minimum at the break*!
Azzollini+2008 see this in late-type spirals out to $z \sim 1$

Modeling suggests scenario of star-formation threshold + radial migration of stars
- e.g., Roskar+2008; Martínez-Serrano+2009; Sánchez-Blázquez+2009

Leads to age minimum (= blue) at break

Stellar-mass profile is *flatter* than surface-brightness; sometimes break disappears!

Evidence for age-reversal at break in star-count data for M33 (Barker+2007; Williams+2009, 2011)
Not all Type II are like that...

Yoachim+2012: large-FOV IFU observations, fitting multiple stellar populations to optical spectroscopy (late-type spirals)

6 late-type spirals with Type II profiles:

Half show age minimum near or at the break!

BUT: other half did not

Roediger+2012: analysis of multicolor (griH) profiles in Virgo spirals:

1/3 of 21 Type II profiles show age minimum near or at the break (Some Type I profiles also show age minima…)

BUT: rest did not
Type II Breaks Do Exist in Stellar Profiles

Martín-Navarro+2012

Erwin+2008
Type II Summary

Apparently (at least?) four sub-types of Type II breaks in S0s + spirals!

1. II.i (inside bar): usually not broken-exp; rare
 Predicted by some N-body models? (mostly ignored)

2. Bar OLR: sometimes not broken-exp; mostly early-type disks; common
 Circumstantial argument — no models yet

3. Spiral OLR(?): broken-exp; somewhat rare?
 Predicted by at least one N-body model (Debattista+2006)

4. SF threshold + radial migration: broken-exp; mostly late-type disks
 Best-developed theory, with some predictions matched by observations (age minimum at break, flattening of break with age, SFR break)
Type III ("Antitruncations")

[Images of galaxies and graphs showing light intensity vs. radius for NGC 4371 (SB0*), NGC 4612 (SAB0*), and NGC 5806 (SABb).]
Bulge or Halo Light at Large Radii?
For *some* galaxies, yes…

1. Outer isophotes are rounder.
2. Smooth transition in SB profile; suggests addition of two co-extensive components.
3. Outer profile not exponential.

A *minority* of Type III profiles are like this (“Type I + bulge/halo”)
38% of Type III in local S0–Sb
15% of Type III in z~0.17 Sa–Sd (Maltby+2012, assuming R^1/4 bulges)
...but for majority, outer excess light is apparently still part of the disk

1. Inclined galaxies: outer isophotes ~ same ellipticity as inner disk.
2. Sharp transitions in profile: not sum of 2 exponentials, so prob. not outer bulge or halo light.
3. Spiral structure in outer disk.
4. Appear in later Hubble types, where bulges are less prominent or absent (Pohlen & Trujillo 2006; Hunter & Elmegreen 2006).
5. Antitruncation seen in edge-on disks by Pohlen+2007, Comerón+2012

Erwin+2008/Gutiérrez+2011 S0–Sb galaxies with $i > 30^\circ$:
- S0: 47% of Type III are III-d
- S0/a–Sb: 71% are III-d
NGC 3982 (SABb)

SDSS r

Radius [arc sec]

0 20 40 60 80 100 120

18 20 22 24 26 28

Erwin+2008

NGC 3642

SDSS g

IRAC 3.6µm

Laine+2014
Type III Formation: Minor (or even Major) Mergers?

Younger+2007: gas-rich, prograde minor mergers can produce antitruncations. Angular momentum of secondary transferred to primary stars, but gas inflow deepens inner potential well, so inner stars keep ~ same radii (also: Laurikainen & Salo 2001)

Outer stars are from primary’s disk

Borlaff+2014: major mergers can sometimes produce rotating S0 remnants; many of these have antitruncated disks
Type III Formation: Tidal Harassment?

Moore+1999: Harassment from cluster tidal field

Problem: this can’t explain Type III profiles in late-type spirals (and irregulars) outside clusters
Type III Formation: In-Situ Star Formation?

NGC 4625 (SABm)
Gil de Paz et al. (2005) GALEX obs.

Type III profile in R (older stars, red) and in UV (young stars, blue)

So Type III profile in both older stars and recent star formation!

Antitruncations seen in HAGGIS Hα profiles
 But only ~2% of galaxies, so < 10% of Type III (SB) profiles

(Elmegreen & Hunter 2006: Given the right ad-hoc initial gas profile, you can end up with antitruncated stellar profile...)
About 8% of local S0–Sdm galaxies show a composite profile: Inner Type II profile with outer excess = “Type II+III”

Herrmann+2013 find “III+II” or “II+II” in 4% of dwarfs

Suggests that whatever mechanisms are involved are not always exclusive...
Correlations with Galaxy Properties?

- No clear correlations of profile type with galaxy luminosity, mass, or V_{rot}.
- **Strong correlation with bars**
 - Barred galaxies more likely to have Type II profiles.
 - Unbarred galaxies more likely to have Type III.
 - Even in barred galaxies, the weaker the bar, the more likely a Type III profile is.
Profile Types vs Hubble Type

Type I favor early types; late-type spirals are predominately Type II

Similar results found with S4G data by Muñoz-Mateos

Late-type dwarfs (Sm, Im, BCDs): Herrmann+2013 find 8%, 61%, 16% for Types I, II, III
Profile Types vs Environment

Erwin+2012: Type II profiles common in field S0s, but absent in Virgo S0s! ("Missing" Type II are Type I instead)

Roediger+2012: Type II profiles exist in Virgo spirals, but appear less common: 34% of Virgo spirals are Type II, vs 49% of field

Maltby+2012: no difference between cluster and non-cluster environment in Abell 901/2 — but restricted definition of Type II makes comparison hard

Cluster environment suppresses Type II formation (makes Type I instead?)
Evolution of Late-type Spiral Disk Types with Redshift

Data from Azzollini+2008 (z > 0.1; GOODS-S ACS images); Pohlen & Trujillo 2006 (z ~ 0.01)

Logistic regression shows evidence for evolution with redshift for Types I and II (P = 0.006, 0.009)

No evidence for trend in Type III fraction

Trujillo & Pohlen 2005, Azzollini +2008: evidence for evolution in Type II break radius (smaller at higher z)

SF threshold + scattering model would predict opposite trend for Types I and II: Type II should turn into Type I as SFR declines and populations age (plus shift from B to r)
What Might Be Happening?

- Type I turning into Type II?
- Interesting, but not predicted by models(?)
- Late-forming galaxies more likely to be Type II?
 - galaxies too low in mass or L at $z \sim 1$ to be in that sample
- Change in mass/luminosity distribution with z?
 - Azzollini+2008 sample biased against low L at high z
 - BUT: no evidence at $z \sim 0$ for Type I/II L difference
- High-z Type I galaxies preferentially evolve to earlier types and/or higher Sérsic n?
Summary

- Three main classes of outer-disk profiles/breaks
 - Type I (~20% of spirals): simple (can extend to ~10 scale lengths); more common in S0 and early spirals
 - Type II (49% of spirals): more common in late types; probably multiple origins
 - Two broad subtypes/mechanisms: Bar-related resonances; SF thresholds + radial migration
 - Type III (28% of spirals): most are extended disk, not bulge/halo
- Strong dependence on Hubble type (and on bars)
- May depend on environment (Type II rare in clusters?)
Outstanding Issues

- How many different mechanisms produce Type II/truncations?
 - Similar to “pseudobulges” — e.g., perhaps several different phenomena lumped together?

- Why is there a diversity of types?
 - e.g., SF threshold + radial migration models might explain truncations, but why does this only happen to some galaxies?

- What is detailed relation between profiles and environment?

- What is the redshift evolution of disk profiles in early-type spirals and S0s?