Connecting disk galaxy kinematics near and far

Jonathan Bird VIDA Fellow Vanderbilt University

Exponential Disks Workshop 10-6-2014

In collaboration with: David Weinberg, Stelios Kazantzidis, Sarah Loebman, Alyson Brooks, Fabio Governato, Charlotte Christenson, Kelly Holley-Bockelmann, Andreas Berlind

Near

local stellar kinematics

Properties of disk galaxies at high redshift

MASSIV: Mass Assembly Survey with SINFONI in VVDS

Age-Velocity Relationship

Epinat+ (2012)

Young stars in disks dynamically settle from z~1 to now

MASSIV: Mass Assembly Survey with SINFONI in VVDS

New simulated galaxies also show disk settling

z = 0 z = 0.3 z = 0.5 z = 1

Munshi, Brooks, Christensen+ (2012)

Gas disk height decreases as rotation dominates

Stars follow gas: disk constructed 'Upside Down'

Younger stars are born progressively colder matching observations

Solar neighborhood AVR at z=0 is similar to MW

Upside-Down construction determines an initial AVR

Heating requirement reduced for intermediate ages

Average heating declines with age

Compare with Power Law Heating

Vertical Isothermality of stellar populations

Upside Down disks naturally exhibit vertically lsothermal populations

Twitter for JBH

To match kinematic observations at high z and AVR at z=0: disk must form upside down from collapsing gas disk #FlagstaffDisks

Conclusion, Questions too!

- Disk settling naturally reproduces z=0 AVR and high redshift kinematic constraints (old, in-situ, hot stars also seen by Brook+2004, House+2011, Stinson+2013)
- Dynamical burden on Mono-age stellar populations is reduced: much more conducive for vertical isothermality
- Possible change in slope in the heating rate, tests?
 - Old, thin disk is crucial!
- Bird+ (2013) : evolution of global kinematics and structure broken down by age in Upside-Down formation scenario
- Nidever, Bovy, Bird+ (2014): APOGEE stellar abundance distributions from 4 < R < 13 kpc. High alpha sequence constant across disk.

To match kinematic observations at high z and AVR at z=0: disk must form upside down from collapsing gas disk #FlagstaffDisks

twitter: @galaxyhistorian ; jonathan.bird@vanderbilt.edu