Molecules in the Interstellar Media of Dwarf Galaxies

Mark Krumholz, UC Santa Cruz

Lowell Dwarf Galaxy Workshop, June 2012

What you get if you google image search "interstellar medium"...

"The black light of the interstellar medium of deep space illumines all that is not, to be seen and not to 'Be'. To 'Be' and not seen – this is the path of the Panther woman.

From the hydrogen oceans of Deep Space she condenses rain.

Water precipitates from Her Vast Womb, falling onto planets open to Her Life–giving moisture."

Outline

- Why do we care about H₂?
- Three questions for theory
- Implications for dwarf galaxies in cosmological context

Maps of HI, H_2 , and SFR

SF Follows H₂, not HI

Bigiel+ 2008

SF Follows H₂, not HI

Bigiel+ 2008

$\rm H_{2}$ and SF at Low Column / Z

 H_2 and SF do not go to o at low column; instead, there seems to be a floor: $f_{H_2} \sim 0.02$, $t_{dep,H_2} \sim 2$ Gyr

Three Questions for Theory

A first order description of star formation in nearby galaxies appears to be SFR = M_{H_2} / 2 Gyr

- What sets the H₂ fraction?
- Why does SF care about H₂?
- How is H₂ related to CO? Deferred to talk by Desika Narayanan; also see Narayanan+ (2011, 2012), Shetty+ (2011, 2012) and Feldmann+ (2012a, 2012b)

Chemical Structure

Chemical and Thermal Balance

 ${
m H_{2}}$ formation ${
m H_{1}}$ n ${
m R}$ = $n_{{
m H_{2}}} \int d\Omega \int d
u \, \sigma_{{
m H_{2}}} f_{{
m diss}} I_{
u}/(h
u)$ $\hat{e} \cdot \nabla I_{\nu} = -(n_{\mathrm{H}_2}\sigma_{\mathrm{H}_2} + n\sigma_{\mathrm{d}})I_{\nu}$ Absorption Decrease in by dust, H₂ rad. intensity

Line cooling $n^2\Lambda = n \int d\Omega \int d
u \, \sigma_d E_{
m PE} I_
u/(h
u)$

 $\hat{e} \cdot \nabla I_{\nu} = -n\sigma_d I_{\nu}$

rad. intensity dust

Decrease in Absorption by

Caveat: this is assumes equilibrium, which may not hold

Calculating Molecular Fractions

To good approximation, solution only depends on two numbers:

 $n\sigma_{
m d}R$ $au_{
m R}$ $f_{
m diss}\sigma_{
m d}E_0^*$ $n\mathcal{R}$ An approximate analytic solution can be given from these parameters. τ_{R} depends only on galaxy $\Sigma, Z \Rightarrow$ can be measured directly

Analytic solution for location of HI / H_2 transition vs. exact numerical result

Calculating f_{H2}

• Qualitative effect: f_{H_2} goes from ~o to ~1 when $\Sigma Z \sim 10 M_{\odot} pc^{-2}$

Krumholz, McKee, & Tumlinson (2008, 2009); McKee & Krumholz (2010)

Observational Test: Individual Clouds in the MW

Lee+ 2012

Tests at Low Metallicity

Also see talk by Dana Ficut-Vicas on Monday

What Explains the H₂ Floor?

Gray: SMC data (Bolatto+ 2011)

Blue: KMT

Red: KMT model with minimum f_{H2} to maintain 2phase equilibrium, pressure computed using Ostriker, McKee, & Leroy (2010) model

Why Does SF Follow H₂?

SF Follows H₂, not CO

Krumholz, Leroy, & McKee 2011; see also Bolatto+ 2011, Genzel+ 2011, Leroy+ 2011

Time-Dependent H₂ Formation

L ~ 10 pc; Glover & Mac Low 2007

L ~ 1 kpc; Gnedin+ 2009

See also Pelupessy+ 2009, Christensen+ 2012

Is H₂ in Equilibrium?

Depends on size scale and gas metallicity:

- > 100 pc scales: yes on average
- ~10 pc scales: maybe;
 simulations suggest no, but
 observations suggest yes,

Equilibrium Timescales

- H_2 forms slowly: $t_{H_2} \sim 1/n \mathcal{R} \approx 100 \text{ Myr/n}_1 C Z'$
- Gas cools quickly: $t_{cool} \sim (T/91 \text{ K}) / k_{CII-H} \delta_C n = 0.04/n_1 C Z' (T/91 \text{ K}) exp(91 \text{ K/T}) Myr$
- At low Z', can have t_{cool} << t_{ff} << t_{H2} → SF
 should take place before bulk of gas forms H₂

Equilibrium Timescales

Cosmological Implications

Gnedin & Kravtsov 2010

Kuhlen+ 2012

Implications for Dwarf Galaxies

Metallicity-dependent SF

Metallicity-independent SF

Same halo (~10¹⁰ M_{\odot} , z~5) in two simulations with different SF recipes (Kuhlen+ 2012)

Mass Function at High z

Press-Schecter-Based Model

Krumholz & Dekel 2012

Observed vs. Model SF History

Not Quite So Simple

Why different than Kuhlen+, Krumholz & Dekel? Probably feedback.

Summary

- HI / H₂ transition tracks warm / cold transition due to radiation-shielding competition
- Non-equilibrium effects become important at low Z
- Shielding depends on Z, resulting in SF rate that depends on metallicity
- This may have important effects for galaxy formation at the dwarf end, but this depends on the feedback

Computing f_{H_2} in Galaxies

(Krumholz, McKee, & Tumlinson 2008, 2009; McKee & Krumholz 2010)

What is $\chi \propto (\sigma_d / \mathcal{R}) (E_o^* / n)$?

- Dust opacity σ_d and H_2 formation rate R both \propto Z, so $\sigma_d / R \sim const$
- CNM dominates shielding, so *n* is the CNM density

FGH curves for MW (Wolfire et al. 2003)

• CNM density set by pressure balance with WNM, and $n_{\text{CNM}} \propto E_{o}^{*}$, with weak Z dependence.

 $\Rightarrow \chi \propto (\sigma_d/R) (E_o^*/n) \sim 1$ in all galaxies!

The Star Formation Law

