

Stellar Surface Brightness Profiles of Dwarf Galaxies

Kim Herrmann

Lowell Observatory

Star Formation in Dwarf Galaxies

June 20, 2012

(Images: LT team and Lauren Hill)

(Pohlen & Trujillo 2006)

A Riddle

Look at a galaxy! Its disk light

Falls exponentially- is that right?

If you look deeply, often you'll see

Signs of us- in both Types II and III!

Why do we exist? Explore the gas,

Motions near and far. Profile the mass.

Search with care; do whatever it takes.

We are Surface Brightness Profile Breaks!

(Elmegreen & Hunter, 2006)

LITTLE

The Sample and Fitting

- 141 Dwarfs (par
 - 96 dIms, 26 BC
- · ≤ 11 passbands
- 776 profiles!

(Hunter & Elmegreen 2004, 2006; Hunter et al. 2006, 2010, 2011, Zhang et al. 2012 + Spitzer Legacy projects)

How common are the Types?

(Herrmann et al., in prep, Paper I)

```
G+11 = Gutiérrez et al. 2011
```

- 47 early-type unbarred spirals
- R-band only
- E+08 = Erwin et al. 2008
- 66 early-type barred spirals
- R-band only

PT06 = Pohlen & Trujillo 2006

- •85 late-type spirals
- g' & r'

Dwarfs = current study

141 dwarf galaxies

- Clear trends with Hubble Types
- Sms and BCDs: predominantly II & III, respectively

 $\mu_{0,i}, \mu_{0,o}, \& \mu_{br}$

Central Surface Brightness, $\mu_{0,i}$ (inner fit)

Outer Surface Brightness Projected to Center, $\mu_{0,0}$

Surface Brightness at Break, µ_{br}

(spiral data from PTO6)

 $h_{R,i}$, $h_{R,o}$, R_{br}

(Herrmann et al., in prep, Paper I)

 $h_{R,i}$, $h_{R,o}$, R_{br} vs. λ

Outer scale length $h_{R,o}$ (kpc)

Break location R_{br} (kpc)

Are there trends? $\mu_{0,o}$ - $\mu_{0,i}$: Break Strength

(Herrmann et al., in prep, Paper I)

Central Surface Brightness, $\mu_{0,i}$

Break is stronger in bluer bands (i.e., FUV) Break is stronger in spirals than in dwarfs

We can also look at radial colors...

Radial Color Trends in B-V

In Dwarfs (Herrmann et al., in prep, Paper II)

There are some outliers

What about different colors?

Same general trends, but not always the same trend for B-V, U-B, & FUV-NUV

(Herrmann et al., in prep, Paper II) TYPE II (inner blue) TYPE I TYPE II (inner flat) TYPE III Sample size: 6 Sample size: 17 Sample size: 29 Sample size: ' Sample size: 13 Sample size: 12 0.8 0.0 -0.4Red Sample size: 13 Sample size: 23 Sample size: 7 Sample size: 6 Sample size: 13 Sample size Sample size: Sample size: 0.8 [mag] 0.4 We have one additional data set for more information... 0.0 -0.4Blue 8.0 8.0 0.4Sample size: 1 Sample size: 6 Sample size: 12 Sample size: 7 Sample size: 10 Sample size: 3 Sample size: 5 3 0.0 1.5 0.0 1.5 0.0 0.5 0.5 1.0 1.0

 R/R_{br}

 R/R_{br}

 R/h_R

LITTLE THINGS Subsample:

LITTLE THINGS

Local

Irregulars

That

Trace

Luminosity

Extremes

The
H (hydrogen)
I (neutral)

Nearby

Galaxy

Survey

HI (red) FUV (blue) V (green)

Breaks & LT HI kinematics

2) Where is the break wrt the rotation curve turnover?

Breaks & LT HI density profiles

21/40 HI profiles have a FI shape (in the SB radial area):

19/40 HI profiles have a I, II, or III shape:

4 similar, 5 farther, 1 closer

3 farther

Highlights & Future Work

- Dwarfs extend the Profile Type trends with Hubble type
 - Late-types: more IIs; Early-types: more IIIs and Is
- More luminous -> brighter $\mu_{0,i}$, larger $h_{R,i}$, $h_{R,o}$, R_{br} ; dwarf & spiral trends
- Between IIs and IIIs:
 - Dwarfs: similar outer & break parameters; very different inner parameters
 - Spirals: similar break parameters; very different outer & inner parameters
- μ_{br} ~ 24 mag/arcsec² in V for dwarfs, spirals, IIs, IIIs...
- For redder bands in dwarfs:
 - IIs: $h_{R,i}$ decreases but $h_{R,o}$ increases
 - IIIs: h_{Ri} increases but h_{Ro} stays the same
 - IIs & IIIs: breaks are relatively independent of wavelength
- Breaks are stronger in bluer bands and in spirals vs. dwarfs (in B&V)
- · Dwarf radial color trends do not exactly parallel those of spirals
- What do Mass-to-Light Ratios and Mass Profiles tell us?
- What do HI kinematics and density tell us about breaks?

NRAO, NSF, LT team, friends, family: Thank you!!!! (and you, too, for listening!)

