Physical properties and metallicities of a sample of dwarf star-forming galaxies located at intermediate redshifts. J. Gallego¹, L. Rodríguez-Muñoz¹, A. Gil de Paz¹, L. Tresse², P.G. Pérez-González¹, Javier Gorgas¹, Nicolás Cardiel¹, G. Barro³, O. Le Fèvre², E. Salvador-Solé⁴, J. Zamorano¹

¹ Universidad Complutense de Madrid² Laboratoire d'Astrophysique de Marseille³ University of California Santa Cruz⁴ Universidad de Barcelona

Introduction

Dwarf galaxies play a key role in galaxy formation and evolution:

• They resemble the first structures that hierarchical models predict to form first in the Universe (Dekel & Silk 1986) and that are responsible for the reionization process (Bouwens et al. 2012).

• The way or epoch they form and how they evolve are still open questions of modern astrophysics.

Iocal universe or clusters	• Their study has been biased to		
Iocal universe or clusters			
Evolved stellar populations hamper accurate estimations of age	ion dominated eractions with r neighbors.		

Objective:

• Formation redshift, star formation histories dwarf properties of low-mass and star-forming galaxies at intermediate z.

The Sample

We build the sample on the CDFS field, covered by numerous multi-wavelength surveys (UV to far-IR) allow RAINBOW data that the base (Pérez-González et al. 2008) to estimate photometric redshifts and stellar masses.

We consider two different galaxy samples selected from the SUBARU NB816 image catalog:

Sample 1: 675 Dwarfs $\langle \square M_* < 10^8 M_{\odot} \rangle$

20.5

20.5

20.5

from

• Blue Compact Dwarfs (BCDs) at intermediate z as reference sample.

VIMOS spectroscopy

R=580 VLT/VIMOS spectroscopy reduced using VIPGI (Scodeggio et al. 2005) at Laboratoire d'Astrophysique de Marseille (LAM).

Instrument	VIMOS (MOS)	
Slits	239	
Exposure	4 h	
R	580 (MR)	
Scale	0.205"/pix	

- Mean spectrum for the objects of our sample.
- Stack built using 36 spectra of dwarfs and BCDs in the whole z range covered by the sample.
- The spectrum is characterized by a faint and flat continuum and strong emission lines, revealing that the systems are dominated by an undergoing star formation burst.
- Sample 2: 800 BCDs Tracers of dwarfs at intermediate z. $0.3 < z_{nhot} < 1$ $M_{B,0}^{>} -18.5$; (B-V)_{B,0} < 0.6; $\mu_{eff,B,0}^{<} 23 \text{ mag arcsec}^{-2}$ Dwarfs D BCDs 79% of dwarf Frequency 90% of BCD nder the limit 300 50 $0.3 < z_{phot} < 1$ $m_{_{I,AB}} < 26$ 26.5 23.5 29.5 m_{I.AB} • z_{spec}-based properties of the sample of 🛛 Dwarfs objects confirmed spectroscopically in **BCDs** The rest Frequency VIMOS/VLT survey (54 dwarfs and 10 25 BCDs). 2.6 3.4 23.5 26.5 29.5 0.2 1.0 1.8 $m_{I,AB}$ Zspec Frequency 5 10 15 10 S 8.75 10.25 -12 -14 -16 -18 -20 -22 24.5 22.5 7.25 -0.25 0.05 0.25 0.45 26.5 5.75 logM*,spec [M_{Sun}] M_{B,0,spec} $B - V_{0,spec}$ S_{eff,B,0,spec}

For more information about the sample please check poster Rodríguez-Muñoz et al. •

Spectroscopic Properties

Conclusions

a) Dwarfs and BCDs at intermediate z follow the overall starforming sequence in the excitation-luminosity diagram, populating the high excitation, low metallicity and high strength of the star-formation burst region. Worth to notice: Candidate to low metallicity dwarf star-forming galaxy ($M_{B,0}$ =-13.4, log[OIII]5007Å/H β =0.1, z_{spec} =0.12). **b)** Dwarfs and BCDs at intermediate z populate the high EW region, revealing that the luminosity of these systems is dominated by the star-formation burst c) Our sample show low metallicity values in a wide range between $\sim 1/15$ and $1/2 Z_{\odot}$

Dwarf candidate to extremely low metallicity

References

- Allende Prieto et al. 2001, ApJ, 556, 63 Kewley & Dopita 2002 ApJS 142, 35 - **Bouwens et al 2012, ApJ, 752, 5** Calzetti 2000 ApJ, 533, 682 - Dekel & Silk 1986 ApJ 303, 39 Gallego et al. 1995 ApJ 455, 7
 - Kong et al. 2002 A&A 396, 503 - Lee et al. 2006 ApJ 647, 970 - Pérez-González et al. 2008 ApJ 675,234 - Scodeggio et al. 2005 PASP 117.1284