Exploring the Cause & Effect of Star-Formation in Blue Compact Dwarf Galaxies with IFU Observations

Bethan James

STScl

Star Formation in Dwarf Galaxies Lowell Observatory, June 2012 Yiannis Tsamis (ESO) Mike Barlow (UCL) Jeremy Walsh (ESO) Mark Westmoquette (ESO) <u>Alessandra Aloisi (</u>STScI)

Talk Outline

 Intro to 'high N/O' blue compact dwarf galaxies UM420 Kinematical maps • UM462 ----Stellar popⁿ age + SFR+ type Mrk996 UM448 Chemical abundance maps Haroll

Future observations and Conclusions

Low Metallicity + (often) starbursting \approx High-z galaxies

Credit: A. Aloisi et al.

IZw18

BCDs: What's all the fuss about? Lyman Break Galaxies

Low Metallicity + (often) starbursting \approx High-z galaxies

Low Metallicity + (often) starbursting \approx High-z galaxies

Credit: A. Aloisi et al.

IZw18

The Mysterious 'N-enriched' BCDs

Table 6. Starburst galaxies with significant nitrogen excess.

IAU Name	Synonyms	$V_{\rm hel}{}^a$	B_{tot}^{a}	M_B	12+log (O/H)	$\Delta \log (N/O)$	Notes
0034-3349	Haro11	6175	14.6	-20.0	7.90	0.8	merger
0125-061	MKN996	1622	15.1	-17.1	8.00	0.6-1.4	probable merger
0218+003	UM420	17514	16.5	-20.3	7.89	0.5	sinking merger?
0459-043	MKN1089	4107	15.0(13.3)	-19.1(-20.8)	8.07	0.5	bright knot in interacting gal.
0837+4717	HS,PC	12630	18.2	-18.1	7.64	0.77	merger?
1139+006	UM448	5560	14.7	-19.9	7.98	0.5	2 knots in center - merger?
1337-313	NGC5253	440	10.9	-17.4	8.16	0.5	Im pec, starburst

^a data from the NED.

The Mysterious 'N-enriched' BCDs

Table 6. Starburst galaxies with significant nitrogen excess.

IAU Name	Synonyms	$V_{\rm hel}{}^a$	$B_{\rm tot}^{a}$	M_B	12+log (O/H)	$\Delta \log (N/O)$	Notes
0034-3349	Haro11	6175	14.6	-20.0	7.90	0.8	merger
0125-061	MKN996	1622	15.1	-17.1	8.00	0.6-1.4	probable merger
0218+003	UM420	17514	16.5	-20.3	7.89	0.5	sinking merger?
0459-043	MKN1089	4107	15.0(13.3)	-19.1(-20.8)	8.07	0.5	bright knot in interacting gal.
0837+4717	HS,PC	12630	18.2	-18.1	7.64	0.77	merger?
1139+006 🤇	UM448	5560	14.7	-19.9	7.98	0.5	2 knots in center - merger?
1337-313	NGC5253	440	10.9	-17.4	8.16	0.5	Im pec, starburst

^a data from the NED.

The Mysterious 'N-enriched' BCDs

Table 6. Starburst galaxies with significant nitrogen excess.

IAU Name	Synonyms	$V_{\rm hel}{}^a$	$B_{\rm tot}^{a}$	M_B	12+log (O/H)	$\Delta \log (N/O)$	Notes
0034-3349	Haro11	6175	14.6	-20.0	7.90	0.8	merger
0125-061	MKN996	1622	15.1	-17.1	8.00	0.6-1.4	probable merger
0218+003	UM420	17514	16.5	-20.3	7.89	0.5	sinking merger?
0459-043	MKN1089	4107	15.0(13.3)	-19.1(-20.8)	8.07	0.5	bright knot in interacting gal.
0837+4717	HS,PC	12630	18.2	-18.1	7.64	0.77	merger?
1139+006 🤇	UM448	5560	14.7	-19.9	7.98	0.5	2 knots in center - merger?
1337-313	NGC5253	440	10.9	-17.4	8.16	0.5	Im pec, starburst

^a data from the NED.

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

0/H Elemental Abundance 2.0e-05 4.0e-05 6.0e-05 8.0e-05 1.0e-04 1.2e-04

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

O/H Elemental Abundance

2.0e-05 4.0e-05 6.0e-05 8.0e-05 1.0e-04 1.2e-04

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

2.0e-05 4.0e-05 6.0e-05 8.0e-05 1.0e-04 1.2e-04

James et al. 2010

Age / years

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

James et al. 2010

James et al. 2010

VLT/VIMOS IFU data (PI:Tsamis) - Maps in H α , D~240Mpc

James et al. 2010

UM462

James et al. 2010

James et al. 2010

VLT/VIMOS IFU - Maps in H α , D~14.4Mpc

O/H abundance Map

James et al. 2010

VLT/VIMOS IFU - Maps in H α , D~14.4Mpc

James et al. 2010

VLT/VIMOS IFU - Maps in H α , D~14.4Mpc

O/H abundance Map

*Decreasing SFR *Increasing stellar population age

James et al. 2010

5.5 Myr

0.01Mo/yr

4.2 Myr

0.07M_o/yr

2

162

200

124

arcsec

 $EW(H\beta)$

86

(b)

VLT/VIMOS IFU - Maps in H α , D~14.4Mpc

O/H abundance Map

*Decreasing SFR

*Increasing stellar population age
*Cause: propagating/triggered SF from merger
(disturbed Hα flux & kinematics)

10

48

6

2

0

-2

arcsec

5.6 Myr

0.01M_☉/yr

5.1 Myr

0.03M_o/yr

James et al. 2010

VLT/VIMOS IFU - Maps in H α , D~14.4Mpc

O/H abundance Map

*Decreasing SFR

*Increasing stellar population age
*Cause: propagating/triggered SF from merger
(disturbed Hα flux & kinematics)
*Effect: Decreasing metallicity

Studied by Thuan et al. 1996 (WFPC2, FOS), 2008 (Spitzer): *Line widths increased with degree of ionisation e.g. [OIII] FHWM~900 km/s *Unphysically high Te unless you assume Ne~10⁶ cm⁻³

VIMOS IFU overlaid on WFPC2 V-band Image + Hα contours

/ Å

Multicomponent Te, Ne & Abundance analysis

Broad Component

•Te: I I,000 K Ne: 10⁷ cm⁻³
•O/H ~ 0.5 Z⊙ (0.2 Z⊙)
•log(N/O)=-0.13 (-0.11)

Narrow Component

•Te:10,000 K Ne: 170 cm⁻³
•O/H ~ 0.5 Z_☉ (0.2 Z_☉)
•log(N/O)=-1.43 (-0.11)

N enrichment from N-rich WR winds also seen in NGC5253 (Lopez-Sanchez+, 2010)

Stellar outflow of N from core? Localised N-enrichment from younger stars?

Broad Component

•Te:11,000 K Ne: 10⁷ cm⁻³
•O/H ~ 0.5 Z⊙ (0.2 Z⊙)
•log(N/O)=-0.13 (-0.11)

Narrow Component

•Te:10,000 K Ne: 170 cm⁻³
•O/H ~ 0.5 Z_☉ (0.2 Z_☉)
•log(N/O)=-1.43 (-0.11)

[NII] λ6584 Map

WR map

N enrichment from N-rich WR winds also seen in NGC5253 (Lopez-Sanchez+, 2010) Stellar outflow of N from core? Localised N-enrichment from younger stars?

Broad Component

Narrow Component

•Te: I I,000 K Ne: I0⁷ cm⁻³
•O/H ~ 0.5 Z⊙ (0.2 Z⊙)
•log(N/O)=-0.I3 (-0.II)

•Te:10,000 K Ne: 170 cm⁻³

•O/H ~ 0.5 Z_☉ (0.2 Z_☉)

 $\log(N/O) = -1.43 (-0.11)$

[NII] λ6584 Map

WR map Broad emission N enrichment from N-rich WR winds also seen in NGC5253 (Lopez-Sanchez+, 2010)

Stellar outflow of N from core? Localised N-enrichment from younger stars?

Broad Component

Narrow Component

•Te:11,000 K Ne: 10⁷ cm⁻³ •O/H ~ 0.5 Z⊙ (0.2 Z⊙) •log(N/O)=**-0.13** (-0.11)

$\frac{3.0e-04}{2.5e-04} \bigcirc O^+/H^+$ $\frac{1.5e-04}{5.0e-04} \bigcirc O^+/H^+$ $\frac{1.5e-04}{5.0e-04} \bigcirc O^{2+}/H^+$ $\frac{1.5e-04}{5.0e-04} \bigcirc O^{2+}/H^+$ $\frac{1.5e-04}{5.0e-04} \bigcirc O^{2+}/H^+$ $\frac{1.5e-04}{5.0e-05} \bigcirc O^{2+}/H^+$ $\frac{1.5e-04}{0.0e+00} \bigcirc O^{2+}/H^+$ $\frac{1.5e-04}{0.0e+00}$

•Te:10,000 K Ne: 170 cm⁻³

•O/H ~ 0.5 Z⊙ (0.2 Z⊙)

 $\log(N/O) = -1.43 (-0.11)$

[NII] λ6584 Map

WR map Broad emission N enrichment from N-rich WR winds also seen in NGC5253 (Lopez-Sanchez+, 2010)

Stellar outflow of N from core? Localised N-enrichment from younger stars?

A spatially resolved, multi-component spectroscopic analysis +mapped SF properties → isolated enrichment & its origin

James et al. 2012a (submitted)

UM448

SuSI2 R, B & V Archive Images

James et al. 2012a (submitted)

UM448

SuSI2 R, B & V Archive Images

water Wavelength (2)

James et al. 2012a (submitted)

mgth (B)

VLT/FLAMES IFU - Maps in H α , D~76Mpc

SuSI2 R, B & V Archive Images

James et al. 2012a (submitted)

VLT/FLAMES IFU - Maps in H α , D~76Mpc

SuSI2 R, B & V Archive Images

Abundance analysis

0.0e+00 4.0e-06 8.0e-06 1.2e-05 1.6e-05 2.0e-05 0.0e+00 4.0e-06 8.0e-06 1.2e-05 1.6e-05 2.0e-05

0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04 0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04

0.0e+00 4.0e-06 8.0e-06 1.2e-05 1.6e-05 2.0e-05 0.0e+00 4.0e-06 8.0e-06 1.2e-05 1.6e-05 2.0e-05

0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04 0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04

0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04 0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04

0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04 0.0e+00 6.0e-05 1.2e-04 1.8e-04 2.4e-04 3.0e-04

Metal poor/rich in/outflows?

*Very efficient in producing young star clusters; present SFR ~22M_☉/yr (Adamo+, 2010)
*Merger between low-mass evolved system and gas-rich component (Ostlin+, 2002)
*Lyα emitter in Knot C →Analogous to
Lyman-break galaxy (Hayes+, 2007)
*Only galaxy in nearby Universe where LyC
photons have been detected (Leitet+, 2011)

James et al. 2012b (submitted)

VLT/FLAMES IFU - Maps in H α , D~85Mpc Haro C2 C3 C1 (a)

fodial Velocity (km s"

Velocity

lodial Velocity (km s" 0 orcsecs -2

FWHM

360 pc

1"

Image: Adamo et al. 2010

*Very efficient in producing young star clusters; present SFR ~22M_o/yr (Adamo+, 2010) *Merger between low-mass evolved system and gas-rich component (Ostlin+, 2002) *Ly α emitter in Knot C \rightarrow Analogous to Lyman-break galaxy (Hayes+, 2007) *Only galaxy in nearby Universe where LyC photons have been detected (Leitet+, 2011)

-2 0 prosects

Flux

(c)

James et al. 2012b (submitted)

VLT/FLAMES IFU - Maps in H α , D~85Mpc Hano

Multicomponent Te, Ne & Abundance analysis

-2

Velocity

360 pc

Image: Adamo et al. 2010

*Very efficient in producing young star clusters; present SFR ~22M_☉/yr (Adamo+, 2010)
*Merger between low-mass evolved system and gas-rich component (Ostlin+, 2002)
*Lyα emitter in Knot C →Analogous to
Lyman-break galaxy (Hayes+, 2007)
*Only galaxy in nearby Universe where LyC
photons have been detected (Leitet+, 2011)

HaroII:SF properties & origin of high N/O...

Haroll: SF properties & origin of high N/O... WR emission

Haroll: SF properties & origin of high N/O... WR emission

Haro II: SF properties & origin of high N/O... WR emission

Haro II: SF properties & origin of high N/O... WR emission

Haro II: SF properties & origin of high N/O... WR emission

Haro II: SF properties & origin of high N/O... WR emission

Haro II: SF properties & origin of high N/O...

WR emission

HaroII:SF properties & origin of high N/O... WR emission

$EW(H\beta)$

log(N/O) C1

HaroII:SF properties & origin of high N/O... WR emission

$EW(H\beta)$

log(N/O) C1

HaroII:SF properties & origin of high N/O... WR emission

 $\begin{array}{c} & & & \\ & &$

Accretion of metalpoor gas? Outflow due to starburst winds? Σ_{SFR}~IM_☉/yr/kpc²

Haro II: SF properties & origin of high N/O... WR emission

Ejecta of WR stars hasn't had time to cool/mix? Spatial resⁿ not high enough to see it?

Can we rely on luminosity-weighted measurements (i.e. long-slit, global spectra etc) to reliably represent the physical properties of high-z galaxies? What are we missing?

Can we rely on luminosity-weighted measurements (i.e. long-slit, global spectra etc) to reliably represent the physical properties of high-z galaxies? What are we missing?

 Kobulnicky +(1999) found good agreement for O/H after applying Δ(O/H)±0.1 to global results
 O/H systematically underestimated (and N/O over-estimated) when using global SDSS spectra of HII regions with different properties (Pilyugin et al. 2012)

James et al. 2012c (in prep) Aloisi et al. 2012 (in prep)

ACS/SBC images with COS aperture

Are neutral-gas abundances different from ionized-gas abundances ?

James et al. 2012c (in prep) Aloisi et al. 2012 (in prep)

ACS/SBC images with COS aperture

Are neutral-gas abundances different from ionized-gas abundances ?

James et al. 2012c (in prep) Aloisi et al. 2012 (in prep)

Are neutral-gas abundances different from ionized-gas abundances ?

James et al. 2012c (in prep) Aloisi et al. 2012 (in prep)

Are neutral-gas abundances different from ionized-gas abundances ?

Different mixing timescales between phases allow us to constrain SFH by comparing the neutral & ionized gas abundance patterns & ratios (Fe-peak, CNO, α-elements)

Diagnosing Ionization Mechanisms in BCDs with HST/WFC3 narrow-band imaging

NGC4214: the power of WFC3 Hα, Hβ, [OIII] N-band images Early science release data

B. James, D. Calzetti, L. Kewley, M. Westmoquette & A. Aloisi

*Cycle 20: 10 orbits (PI James) *Imaging 2 BCDs Mrk209, Mrk71 *D~5Mpc so 10pc~0.4" *[OII]3727, Hell 4686, [OIII], Hb, Ha, [SII] 6716, [SII] 6731, (+ cont^m) *Map electron density and O/H *Map WR emission ***BPT** diagram - shocks/AGN/ photoionisation? *Role of feedback in energetics, 0.5 structure & SF in BCDs

Monday, July 9, 2012

Conclusions

- * BCDs can help us understand the formation and evolution of the first galaxies in the early universe
- * IFU data is essential in furthering this understanding by allowing us to map their kinematical, chemical and stellar properties
- We can explore the cause of SF by combining kinematical
 & stellar population age maps
- * Assess the effects of SF by conducting spatially resolved analyses by (i) deriving 'true' ionised-gas abundances & (ii) locating areas of localized enrichment/ depletion
- * Studying the ionised- and neutral-gas abundances will provide even deeper understanding of SF within BCDs, as will the effect of feedback.