The degeneracy between star-formation parameters in dwarf galaxy simulations and the M_{star} - M_{halo} relation

Annelies Cloet-Osselaer, Sven De Rijcke, Joeri Schroyen and Mina Koleva

Outline

Galaxies:

- Gas Directly
- Stars

Directly observable

- $-DM \rightarrow indirectly observable:$
 - Gravitational lensing
 (Mandelbaum 2006, Liesenborg 2009)
 - Dynamical modeling of kinematical tracer (Kronawitter 2000, De Rijcke 2006, Barnabe 2009, Napolitano 2011)

→ M_{star}-M_{halo} relation:

- High mass range: determined from
 - Observations
 - Abundance matching techniques (Guo 2010, Moster 2010, ...)
- Low mass range: extrapolations / simulations

 \rightarrow M_{star}-M_{halo} relation:

Behroozi, 2010

- High mass range: determined from
 - Observations
 - ⁻ Abundance matching techniques (Guo 2010, Moster 2010, ...)
- Low mass range: extrapolations / simulations

M_{star}-M_{halo} for dwarf galaxies

- Difficult to observe
- Simulations!!

→ too high stellar mass compared to halo mass.

Sawala, 2010 Vladstudio

Simulations

- Initial setup:
 - Spherically symmetric DM halo with NFW profile
 - Gas cloud
 - Homogeneous
 - Pseudo isothermal
- Cusp-to-core problem:
 - NFW profile stable in DM only simulations (quiet start)
 - Conversion to core when gas/star formation is included

Simulations

• Code: modified version of Gadget2

(Springel et al. 2005)

- Star formation
- Feedback efficiency ε[®]_B
- $ho_{
 m g} \geq
 ho_{
 m SF} \
 abla \cdot oldsymbol{v} \leq 0$

- Cooling:
 - Metallicity dependent radiative cooling (Sutherland and Dopita 1993)
 - Cooling below 10⁴ K (see talk Joeri Schroyen)
 - New cooling curves (much more at Sven De Rijcke's talk)

Simulations

- influence of <u>feedback</u>
 <u>efficiency</u>
 - ightarrow In literature trend towards increasing ho_{SF} (Governato 2011)
 - Gas collapse to smaller gas clumps → cooling below 10⁴ K needed.
 - Results: permanent SF → too metal rich and compact compared to observations
 - Solution: increase $\epsilon_{FB} \rightarrow$ extra energy in ISM stops continuous SF

More about star formation

Influence of density threshold

Number density = # hydrogen atoms/cm⁻³

Parameter Survey

- $n_{sp} = 0.1 6 50 \text{ cm}^{-3}$
- $\varepsilon_{R} = 0.1-0.3-0.5-0.7-0.9$

→ simulated galaxies move along the kin&phot scaling relations

<u>'Best' values:</u>

- $n_{SF} = 6 \text{ cm}^{-3} \& \epsilon_{FB} = 0.7$
- $n_{SF} = 50 \text{ cm}^{-3} \& \epsilon_{FB} = 0.9$
- → different galaxies which line up along the same scaling relations.
- → Degeneracy!

Star formation: CMD

Observations:

Tucana dwarf galaxy from LCID (Monelli 2010)

- $-M_{star} = 1.81 \cdot 10^6 M_{sol}$
- $M_{V} = -9.55 \text{ mag}$
- $-\mu_{0.V} = 25.05 \text{ mag/arcsec}^2$
- SFH:
 - 10% stars formed 13.2 Gyr ago 50% stars formed 12.1 Gyr ago 95% stars formed 9.7 Gyr ago

• Simulations:

Dwarf galaxy with

$$M_{stor} = 1.936 \cdot 10^6 M_{sol}$$

- $M_v = -9.71 \text{ mag}$
- $\mu_{0.0} = 24.41 \text{ mag/arcsec}^2$
- Comparable SFH:

CMD

M_{star}-M_{halo}

 Put our modeled galaxies next to the observations and other literature.

Conclusions

- Natural conversion from cusp to core due to the response of DM to the evacuation of gas from the central parts.
- In our simulations we see a **degeneracy** between $n_{\mbox{\tiny SF}}$ and $\epsilon_{\mbox{\tiny FB}}$
- The simulations are not in agreement with the extrapolated
 M_{star}-M_{halo} relation
 - is the extrapolation correct?
 - Look for other parameters/processes that might lower the stellar mass in our simulations.

