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Abstract. We have monitored hundreds of stars at 30-minute cadence as part of our
Cycles 1-4 Kepler Guest Observer programs. Our initial sample was chosen largely by
their GALEX colors (i.e. “UV bright”), so we anticipated that it would contain a large
number of spotted stars. In fact, the sample also contained pulsating A and F stars,
pulsating red giants, and a substantial fraction of stars that showed no variability at all
on any timescale. Visual inspection of the light curves alone generally is not adequate to
determine the cause or even the level of variability, so we developed sophisticated tools
to automatically classify stars using various windowing and power spectrum tests. We
present preliminary results and discuss the detection limits for variability in the Kepler
database.

1. Introduction

1.1 Kepler Light Curves

Over a 4-year period from 2009 to 2013 the Kepler spacecraft obtained total visual brightness
measurements every 30 minutes for about 150,000 stars. Individual stars were observed for a
minimum of 90 days, and many were observed for the entire duration of the mission. A much
smaller number were observed with higher (1-minute) cadence. The observatory design and
data calibration procedures were optimized for the detection of planetary transits. Stellar
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variations on longer timescales are difficult to recover from the data, because the overall
flux calibration drifts unpredictably throughout each 90-day observing quarter, and it is
radically different from one quarter to the next. Short timescale variations (like planetary
transits, but also pulsations, spots, and close binary effects) can still be recovered with some
kind of detrending routine. Adopting this approach completely eliminates the possibility of
discovering longer timescale variations in the mean level (due to starspot evolution, activity
cycles, slow pulsations, etc.).

Figure .1: A pseudo HR diagram of our initial GO sample from Paper I. Identifications were
made using a labor- and computationally-intensive procedure based primarily close scrutiny
of the power spectra. Variability is broken into 4 color-coded classes based on the driving
mechanism, but there are multiple subclasses.

Most of the KEPLER targets are too faint to have been observed spectroscopically before
the mission, although there has been a major effort to perform spectroscopic follow-up of vari-
able targets of many types (e.g. rotational modulation due to starspots or fixed surface pat-
terns, pulsators, and binary effects). The Kepler Input Catalog (KIC) lists photometrically-
determined properties for all the stars, but these are not uniformly reliable. The KEPLER
photometric bandpass includes the entire optical spectrum; no color information is avail-
able. Given the large number of targets, limited prior knowledge of their properties, lack
of reliable longterm flux calibration, how do we efficiently uncover the interesting targets?
Which properties of their variability (amplitude, change in amplitude, periodicity, etc.) can
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Figure .2: Our automated classification procedures rest fundamentally on a single parameter
(the gaussian width of the light curve) probed over characteristic timescales. The left panel
shows this measure of variability plotted versus Kepler magnitude for our entire GO sample.
The right panel illustrates the effect of daily detrending (red dots) on the detectability
threshold.

be parameterized automatically to discover and classify variables of these different types for
more detailed follow-up studies?

1.2 Automated Classification of Light Curves

The task of automatically classifying variability based on light curves has been the focus
of many efforts. Most automated schemes first obtain parameters from the light curves
using a Fourier decomposition, such as the Lomb-Scargle method (Lomb 1976) or some
variant. These parameters are then passed to a decision making process: random forest
classifier (Richards et al. 2011; Dubath et al. 2011), multivariate Gaussian mixture classifier
(Debosscher et al. 2007, 2009; Blomme et al. 2010; Debosscher et al. 2011), Bayesian network
classifier (Eyer & Blake 2005; Sarro et al. 2006, 2009; Blomme et al. 2011; Debosscher et al.
2011). Eclipsing binaries, due to their ability to yield useful stellar parameters such as radius
and mass, have seen attention from Prsǎ et al. (2011), Slawson et al. (2011), Matijevič et al.
(2012).

1.3 Manual Classification of Our Guest Observer Sample

Brown et al. (2014; hereinafter Paper I) report on the classification of a sample of 239
stars observed in a KEPLER multi-year Guest Observer (GO) program. This sample was
chosen by GALEX colors and x-ray emission, so it was expected that it would contain a
large fraction of magnetically-active, spotted stars. We classified the stars in that sample
using primarily the power spectrum distribution with some aid from visual inspection of the
light curves. The sample included pulsating A and F stars, pulsating G and K giants, and
close binaries, as well as spotted stars. We discounted using the parameters in the KIC.
This classification process was very time-intensive, and these procedures became impractical
as our sample continued to expand as more data became public and as more ground-based
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follow-up observations were obtained. Calculating the power spectra, in particular, became
a limiting factor.

1.4 Semi-Automated Classification of Kepler Light Curves

We therefore used the knowledge gained from our original sample to develop semi-automated
and, eventually, fully-automated procedures to classify KEPLER light curves without the
need for visual inspection, calculation and analysis of power spectrum, period finding, or
excessive operator input. The resulting pipeline, testing it with a larger sample with sup-
porting ground-based data, and its application to a randomly-selected sample of 1000 Kepler
light curves is fully described in Wells et al. (2014). Many of the tools and modules are of
general utility. For example, a single command operates on an input directory of any number
of fits files and automatically classifies light curves into about 10 physically-distinct mech-
anisms, including non-variable stars (which comprise a surprisingly large fraction). Plots
can be created automatically for each step or generated later with modular tools that follow
standardized calling sequences. The tools developed for file manipulation and plotting can
be applied to any kind of two-parameter data tables in fits or ascii format; nothing is specific
to KEPLER data.

Our methodology is relatively simple, extremely fast, and fairly robust. Rather than
perform frequency analysis of signals, we analyze the properties of the variability within
each light curve. We also employ detrending techniques over a range of timescales. Several
relationships were drawn using the well-studied sample in Paper I as a training set. These
relationships were then applied to a test sample to validate the technique before being
applied to a randomly selected sample of KEPLER targets. We discuss these results and
several implications for KEPLER calibration and data analysis.

2. Technique

As an initial step, we classified our 239 GO targets (the “GO sample”) by variability type,
shown in Fig. 1 as a pseudo “HR Diagram” (Paper I). The ultraviolet brightness of rotational
modulators and close binaries is presumably due to enhanced magnetic activity. Our sample
also included a large number of pulsators. Stars with no detectable variation occur through-
out the HR diagram. Our labor-intensive classification procedure involved computing and
visually analyzing power spectra for all the stars. This became computationally prohibitive
the Kepler database continued to grow. In addition, our ground-based followup programs
were extended to find additional rotational modulators (the “MMT sample”). It therefore
became necessary to develop an automated system to classify the stellar variability. We used
the GO sample as a “training set” and the MMT sample as a trial set. When the procedures
were robust, we used them to automatically classify a randomly-selected sample of Kepler
targets (the “Random Sample”).

Our automated classification procedure (Wells et al., in preparation) is constructed as
a modular “pipeline”. Starting with a directory full of Kepler data files, it automatically
generates a large number of optional ancillary plots and tables and provides a single list of
Kepler ID v. variability type. It is written so generally that it will work on any kind (not
just Kepler) of Fits tables, allowing the user to plot or extract any of the data fields into IDL
vectors and ascii tables. It was designed to replicate the results of our intensive analysis of
the GO sample, so it does not classify all possible types of variability (though these can be
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Figure .3: We use as a basic variability parameter the width of a histogram of the Kepler
flux distributed about a mean value over some characteristic timescale. The top panel
shows a raw Kepler light curve normalized to each quarterly mean (which is then set to 0).
None of this variability is real, as illustrated in the lower panel, which is normalized to the
daily mean. The right-hand panels show the histogram with a gaussian fit superimposed.
The blue portion highlights the part of the histogram above a half maximum value that is
determined without the additional step of fitting a gaussian. Widths determined either way
are consistent so long as the histogram is symmetrical (not always the case; binary stars, for
example, show a dual peaked histogram).

added as modules). We then applied it to the larger MMT sample and verified (using visual
inspection of power spectra and light curves, as well as outside information like the Kepler
input catalog) that it yielded correct classifications. We then selected a random sample of
Kepler data and fed it through the pipeline. The basic principles are illustrated in Figs. 2
through 4.

3. Classification Results for Three Samples

Approximately 73% of the targets in our ultraviolet/x-ray selected GO sample are variable,
compared to only 40% of the stars in our randomly-selected sample (see Table 1). The sub-
sequent selection from our MMT sample was much more successful at identifying spotted
star candidates and eliminating pulsators. Fig. 5 shows the result of our classification of
a random sample of Kepler stars. Delta Scuti pulsators and pulsating K giants are unam-
bigously identified, while Gamma Dor pulsators and Gamma Dor/Delta Scuti hybrids are
somewhat intermingled with low-level rotational modulation of F-type stars. Three types of
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Figure .4: We calculated the variability parameter over a range of timescales for each
lightcurve. This figure illustrates the power of this technique to discriminate constant stars
(top) from Delta Scutis (middle) and spotted stars (bottom). These curves are linear outside
the the intrinsic variability timescales of the target. In the absence of instrumental varia-
tion, we would expect constant stars to show the same width regardless of the detrending
timescale. We found random variation in the Kepler light curves on timescales longer than
a day.

Table .1: Results from Automated Classification Procedure

Classification GO Sample MMT Sample Random Sample
(239 stars) (451 Stars) (950 stars)

Rotational Modulation 24% 31% 18%
Pulsation 41% 6% 19%
Binarity 8% 0.7% 1.5%
Not Variable 27% 63% 62%

rotational modulation are clearly separated: active late-type stars, fixed-pattern Ap stars,
and pre-mainsequence stars. Some binary systems include pulsating or spotted stars.
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4. Constant Stars in the Kepler Database

We were initially surprised at the high number of “constant” stars in our GO sample. If they
are ultraviolet/x-ray bright, they should be active and should show rotational modulation.
One possibility is that they could be bright in the ultraviolet because of low metallicity.
Alternatively, some could have entered a Maunder minimum phase since the GALEX and
x-ray data were obtained. As the top panel of Fig. 3 illustrates, you can not tell if a star is
constant by looking at its light curve. We have begun a longterm program for undergraduate
researchers at CofC to monitor these constant stars from quarter to quarter, looking for
evidence that stars might be entering or leaving Maunder minimum phases. The Kepler
mission design and calibration pipeline is designed to search for short-timescale transits.
The overall flux level drifts quasi-randomly (though with some patterns that repeat every 4
quarters). Constant stars were initially identified by their complete lack of periodic variation
seen in the power spectra. We then identified a “threshold” level of detectability (Fig. 2)
and characterized the nature of the drifting mean flux level (Fig. 4). In the end, we found
that detrending the data using daily mean levels removes the artificial variability induced
by the instrument or calibration routines and produces a narrow, symmetric distribution of
flux measurements about the mean. Unfortunately, doing so removes all information about
longer term variability. In general, the quarter-to-quarter standard deviation of the width of
the flux distribution is less than 10%. In all cases where it was substantially higher, visual
inspection of the light curves revealed a clear instrumental signature in some quarters that
was not present in others. In order to see solar-like variability (low level over 10s of days)
or cycle variability, greater attention needs to be focused on removing the randomly drifting
instrumental signature. The procedures and results are described in more detail in Wells et
al. (2014).
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Figure .5: A pseudo HR diagram of our Random Sample of 950 Kepler targets. Identifications
were made using our automated classification routine. Variability is broken into 4 color-
coded classes based on the driving mechanism, but multiple subclasses are identified by the
classification pipeline.
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