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Abstract.

Using previously published gravity-sensitive indices, we report on the analysis of near-
infrared spectra for ∼ 80 M and L dwarfs. The spectra were obtained as part of the Brown
Dwarf Spectroscopic Survey (BDSS) using NIRSPEC at the Keck Observatory, and each has
a resolving power of R ∼ 2000 in the J band. With established gravity indices in the J band
we can disentangle the degeneracy between temperature and age for brown dwarfs of various
masses. By comparing a subset of the BDSS database with gravity indices defined at lower
spectral resolution, we demonstrate that these indices also work well for higher resolution
spectra. We then apply these techniques to M and L dwarfs in the BDSS to classify the
diverse surface gravities of this large sample in a consistent manner. This analysis provides
new age estimates for many M and L dwarfs, which will guide future studies of the young and
old brown dwarf populations.
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1. Introduction

Since their discovery in the mid 1990’s, the number of known brown dwarfs has increased dramati-
cally. In large part, these discoveries were made using wide-field surveys such as 2MASS (Skrutskie
et al. 2006), SDSS (York et al. 2000), UKIDSS (Lawrence et al. 2007), and WISE (Wright et al.
2010). The peak flux of a brown dwarf falls in the 1-5 µm range, so the advent of infrared ar-
rays has allowed for many discoveries over the past 20 years. In addition to photometric surveys,
spectroscopic follow-up has been the key to understanding the physical properties of brown dwarfs.

As summarized in Kirkpatrick (2005), in the red part of the optical regime and into the near
infrared (NIR), brown dwarf spectra are dominated by spectral absorption features. Molecular
bands of FeH, CO, and H2O are common features of M and L dwarfs, as well as neutral atomic
absorption lines from metals such as Na, K, Fe, Al, and Ca, and broad, continuum-like H2 collision-
induced absorption. The varying strengths (and presence) of different lines determines spectral type
and provides insight into other physical properties, such as surface gravity and metallicity.

1.1 Brown Dwarf Spectroscopic Survey

In 1999, the Near-Infrared Spectrometer (NIRSPEC; McLean et al. (1998)) was commissioned for
the W.M. Keck II 10m telescope on Mauna Kea in Hawaii. This instrument was designed for
both moderate (R=λ/∆λ ∼ 2000) and high (R∼20,000) resolution spectroscopy in the 1-5 µm
wavelength regime, making it ideally suited to the study of brown dwarfs. For this reason, Ian
McLean and collaborators chose NIRSPEC to take spectra of a large sample of brown dwarfs and
low-mass stars, known as the Brown Dwarf Spectroscopic Survey (BDSS). The primary goal of the
BDSS as outlined in McLean et al. (2003) is to gather a large database of NIR spectra of low-mass
stars and brown dwarfs in order to examine their spectral properties and make comparisons to
evolutionary and atmospheric models. In McLean et al. (2003), the first set of moderate resolution
data are presented, and these are followed by high resolution spectra in McLean et al. (2007) and
Rice et al. (2010). Over the past 15 years, the BDSS team at the University of California, Los
Angeles has accumulated many infrared spectra of brown dwarfs and low-mass stars (see §2).

1.2 Surface Gravity as an Age Indicator

Formation and evolution theory of brown dwarfs suggests that M and L dwarfs are a mixture of very
low-mass stars and high-mass brown dwarfs, while T and Y dwarfs are entirely substellar (Burrows
et al. 2001; Cushing et al. 2011). Degeneracy between mass, temperature, and age makes it difficult
to accurately characterize a brown dwarf solely on its spectral type. For example, a spectral type L-
dwarf could conceivably be a very old low-mass star, a moderate-aged more massive brown dwarf,
or a newly formed low-mass brown dwarf. A brown dwarf’s surface gravity (g = GM/R2) will
increase as it ages and its radius shrinks. Luckily, brown dwarfs have several spectral features
which can indicate the strength of surface gravity, thus allowing us to disentangle mass and age.

In particular, the strength and equivalent widths (EW) of FeH, Na I, and K I lines in optical
(Cruz et al. 2009) and NIR spectra (McLean et al. 2003; McGovern et al. 2004; Allers & Liu
2013) are shown to be correlated to surface gravity. For dwarfs with lower surface gravities, the
atmospheric pressure is lower so alkali metals tend to be more ionized. Thus, they have weaker
neutral alkali metal absorption lines. For higher surface gravities, higher atmospheric pressure
allows for more recombination to occur and thus larger amounts of neutral potassium and sodium
are available as absorbers. By studying how the strengths of these lines vary with spectral type
and gravity, we can estimate ages of brown dwarfs from their NIR spectra.

Allers & Liu (2013) (hereafter A13) presents a NIR gravity classification system based on
moderate (R∼750) and low (R∼100) resolution spectra of a large sample of brown dwarfs. The
A13 gravity classification scheme is determined primarily on the strength of several Na, K, and
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FeH lines in the NIR. In this paper, we compare the A13 gravity classifications to an overlapping
sample from the BDSS using medium resolution (R∼2150) spectra. We then apply the A13 gravity
classification technique to a large sample of BDSS targets. In §2 we present our sample and in §3
we describe the calculation of potassium line equivalent widths as a diagnostic for surface gravity.
In §4, we present the FeHJ index, and in §5 we describe our future plans to determine gravity
classifications for the entire set of M and L dwarfs in the BDSS, as well as plans to extend the
gravity classification scheme for T dwarfs.

2. Sample

For this preliminary analysis, we examine spectra from the BDSS observed between 2000 and 2009.
In total, there are ∼ 80 low-mass stars and brown dwarfs with spectra in the N3 filter (J band) at
a resolution of R ∼ 2150 observed using the moderate-resolution, non-echelle mode on NIRSPEC.
Our sample covers a range of spectral types from M5 to L8, with 16 of our targets overlapping the
sample presented in A13.

2.1 Observations

Targets were observed using the strategy described in McLean et al. (2003). Typically, 300 s
exposures were taken in nod pairs of 20” separation along the 42” slit. Fainter objects were
observed for longer, as needed. For the medium resolution mode, the slit is 0.38” wide (two pixels).
These nods were generally done in ABBA format for a total observing time of 20 minutes per
target. A0V stars at similar airmass were chosen for each target to calibrate the spectra. If there
were no nearby A0V stars, calibrators of spectral type B9-A3 were used instead. In N3, the A0V
stars typically only contain the Paβ absorption line at 1.282 µm , which is easily removed from
the spectrum by interpolation. In addition to calibrators, flat field and dark frames were taken, as
well as spectra of Ne and Ar lamps for wavelength calibration.

2.2 Data Reduction

Data reduction was performed by various collaborators in the BDSS team using the REDSPEC
software designed specifically for NIRSPEC data as outlined in McLean et al. (2003) and Rice et
al. (2010). The code first corrects for spatial and spectral distortion on the array using the Ne and
Ar lamp lines with wavelengths taken from NIST (http://physics.nist.gov). The nod pairs are then
background subtracted and divided by the flat field. OH emission lines and bad pixels are removed
as well. Spectra are obtained by summing over a range of ∼10 pixels (depending on seeing) and
then dividing by the calibrator spectrum to remove telluric features. Each pair of spectra was
normalized and combined with other pairs (when available) to achieve higher signal-to-noise ratio
(SNR). This sample contains targets with SNR ∼10-200, although the majority of the spectra have
SNR of at least 20, as required by the BDSS. Finally, heliocentric velocity corrections were applied
to the normalized spectra.

3. Equivalent Widths

We compute equivalent widths (EW) for the four potassium lines in the J band. For accurate
comparison, we use the same line and continuum windows as defined in A13 and as shown in
Figure 1. The blue, green, and red regions indicate the line windows used, while the grey shows the
continuum windows. The KI doublet at 1.1692 µm and 1.1778 µm share the continuum windows
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Figure .1: Location of Equivalent Width and FeHJ windows as defined by A13, shown for
NIRSPEC spectra of native resolution, R∼2150 for three different L3 targets. The colored
regions indicate the line windows used, while the grey shows the continuum windows. The
doublet at 1.1692 µm and 1.1778 µm share the continuum windows on either side of the
doublet, and the 1.2437 µm and 1.2529 µm lines share the continua surrounding the 1.2529
µm line. A13 excluded the 1.2437 µm line because of the FeH contamination on the blue
side of the line. For this paper, all calculations were performed on the native resolution
(R∼2150); A13 calculated EWs using R∼750.

on either side of the doublet, and the 1.2437 µm and 1.2529 µm lines share the continua surrounding
the 1.2529 µm line. A13 chooses to exclude the 1.2437 µm line because of the FeH contamination
on the blue side of the line.

Using a procedure similar to A13, we estimate a continuum using a linear regression fit to the
flux in the continuum windows. The EW calculations are performed using a Monte Carlo (MC)
technique of 1000 iterations. For each iteration, the flux in each pixel is multiplied by a random
number drawn from a Gaussian centered at 1 with a sigma determined by the SNR of that pixel.
The equivalent width for each flux modulation is recorded, and we then compute the median and
standard deviation of the EWs as the best estimate and 1σ uncertainties.
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Figure .2: K I equivalent width versus spectral type for BDSS targets. For the three K I
lines used by A13, regions are shaded to denote the locations of cutoffs for various gravity
designations. For each line, targets lying within the salmon-pink shaded region receive a
score of “2”, targets within the green shaded region receive a score of “1” and targets within
the purple shaded region receive a score of “0”. The three values for each target are then
averaged to determine a final gravity classification, where VL-G is very low gravity, INT-G
is intermediate gravity, and FLD-G is “field”, or high, gravity. For the 1.2437 µm line, A13
does not define values due to contamination of the line by FeH absorption. Various symbols
represent different populations of stars: ’+’ is a known young object, ’x’ is in a binary system,
squares are in Rho Ophiuci, octagons are in the Pleiades, diamonds are in Upper Scorpius,
triangles have peculiar spectra (generally red or blue), and ’o’ is the default.

In Figure 2, we show results for the four K I Equivalent Widths versus NIR spectral type,
calculated using the Monte Carlo technique. Shaded regions in Figure 2 show the boundaries
proposed by A13 to designate low, intermediate, and high surface gravity objects. Objects lying
within the salmon shaded regions receive a score of “2” (indicating low gravity), objects in the
green shaded regions receive a score of “1” (intermediate gravity), and objects within the purple
shaded regions receive a score of “0” (“field” or high gravity). The scores are then averaged for
each object to obtain a gravity classification.
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3.1 Comparison to Allers & Liu (2013)

A13 proposes a quantitative system for determining surface gravities and age estimates for ∼ 70
M and L dwarfs. They first chose known gravity-sensitive features in the NIR spectra of M and L
dwarfs, and then created indices that distinguished known young (≤ 10 Myr) dwarfs from known
older (field, > 300 Myr) dwarfs. A13 introduces three designations for surface gravity to be used
in conjunction with spectral type to characterize brown dwarfs. The designation “FLD-G” is given
to older dwarfs, with gravity indices similar to those of typical field dwarfs. “INT-G” designates
objects of intermediate gravity. These objects lie approximately in between the young and old
populations. Finally, “VL-G” objects have spectral indices consistent with objects exhibiting signs
of very low gravity.

In Figure 3, our EW results are plotted against the results from A13. We have 12 overlapping
targets with the A13 moderate resolution SpeX sample. Due to higher resolution and good signal-
to-noise using NIRSPEC, our estimated uncertainties tend to be smaller than in A13. However, a
few of the targets have a SNR of ∼10, which tends to produce much larger uncertainties on the
estimated EW values.

With only two exceptions, our values match well with those of A13. There is considerably
more scatter for the targets with lower equivalent width values, but these do not appear to be
systematically skewed. The two noticeable exceptions in Figure 3 are G196-3B and 2MASS 0141-
4633. The outliers are probably a systematic effect due to lower SNR observations, as indicated by
the larger error bars. 2MASS 0141 is only an outlier for one out of three K I EW values; the other
two K I EW measurements are consistent with A13. In the case of G196-3B, it is most likely that
scattered light from the brighter primary affected the observations.

4. FeHJ Index

In addition to the KI equivalent width measurements, we also studied the FeHJ index as defined
by A13 for moderate (R∼750-2000) data. The FeHJ index is based on the 1.2 µm FeH absorption
feature. In Figure 1, the window used for computing the index is marked in yellow, and the windows
used for estimating the continuum are shown in grey.

As was done for the EW calculations, we ran a Monte Carlo process to modulate the flux in
each pixel by a random number drawn from a Gaussian, with a width defined by the SNR. Next,
we compute the index for 1000 iterations, and used the median and standard deviation as our best
estimate and one-sigma uncertainties. In addition to using the native resolution (R ∼ 2150), we
also convolved our spectra with Gaussians to smooth them out and mimic lower resolution data at
R=750. This Gaussian smoothing was done using the astropy2 convolution via 1D Gaussian kernel
after each iteration of flux modulation, before calculating the index values. Our results are shown
in Figure 4.

Shaded regions denote cutoffs for gravity index scores in a similar manner to Figure 2. In
Figure 5, we compare our results to those of A13. Our results agree quite well, with the exception
of one outlier, G196-3B. Again, we suspect that scattered light from the primary could be the cause
of this particular outlier.

2http://www.astropy.org
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Figure .3: Comparison between A13 and Martin et al. calculated equivalent widths for 3
of the K I lines. In general, the error bars presented in this paper are smaller because of
the higher resolution of NIRSPEC data. However, a few objects have data with SNR∼10,
which causes much larger uncertainties in the EW measurements. The 2 σ outliers are noted
above.
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Figure .4: Low and Moderate Resolution gravity index values for R∼ 2150 spectra. Shaded
regions denote cutoffs for gravity index scores, as described in Figure 2. A13 did not define
gravity-type cutoffs for objects M5 and earlier or L7 and later. Objects lying within the
salmon-pink shaded regions receive a score of “2” (indicating low gravity), objects in the
green shaded regions receive a score of “1” (intermediate gravity), and objects within the
purple shaded regions receive a score of “0” (“field” or high gravity). The scores are then
averaged for each object to obtain a gravity classification.

5. Future Work

The BDSS has grown significantly over the past 15 years. Our team has amassed over 300 spectra
of M, L, and T dwarfs. We plan to continue the surface gravity analysis presented in this paper by
extending it to the entire sample of M5-M9 dwarfs and all L dwarfs. Such a large sample should
enable a better statistical analysis of the distinction between high and low surface gravity objects.
We hope to develop designations for the low and intermediate gravity objects by fitting lines to
our EW vs spectral type data. We also plan to extend the analysis for T dwarfs, and define useful
indices to determine surface gravities of later type dwarfs.
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6. Conclusions

Using a sample of ∼ 80 M- and L-type dwarfs with R∼2150 resolution spectra from NIRSPEC
on Keck, we calculate equivalent widths of potassium lines and determine other gravity indices as
proposed by A13. By comparison to an overlapping sample of 16 targets with the A13 sample, we
find that our measurements and gravity scores are consistent with A13. In general, our gravity
indices have smaller uncertainties than A13 due to higher resolution and higher signal-to-noise data.
We use a Monte Carlo method of 1000 iterations, and we propagate uncertainties in flux based on
the S/N of the target spectrum. We then apply the A13 technique to a large sample of BDSS J
band observations of low mass stars and brown dwarfs to determine their gravity types.
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BDSS resolution of R∼2150 as well as the convolved R∼750 index values are plotted. Both
resolutions agree completely within the uncertainties. Therefore, using R∼2150 spectra to
calculate the FeHJ index is a valid replacement for R∼750 spectra.
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