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Abstract. This paper explores and compares the pitfalls of modelling the three-
dimensional wind of a spherical star with a cartesian grid. Several numerical methods
are compared, using either uniform and stretched grid or adaptative mesh refinement
(AMR). An additional numerical complication is added, when an orbiting planet is con-
sidered. In this case a rotating frame is added to the model such that the orbiting planet
is at rest in the frame of work. The three-dimensional simulations are systematically
compared to an equivalent two-dimensional, axisymmetric simulation. The comparative
study presented here suggests to limit the rotation rate of the rotating frame below the
rotating frame of the star and provides guidelines for further three-dimensional modelling
of stellar winds in the context of close-in star-planet interactions.

1. Introduction

Magnetized stellar winds have long been recognized as the major source of angular momen-
tum extraction in main sequence stars (Parker 1958; Weber & Davis 1967; Mestel 1968). In
order to reliably assess the stellar wind torque, the acceleration profile and the magnetic field
geometry of the wind are needed. It was recently demonstrated that, in particular, complex
magnetic topologies of cool stars could significantly alter the torque (see, e.g. Cohen & Drake
2014; Réville et al. 2014) compared to more simple topologies. Three dimensional numerical
simulations provide today a reliable way to compute, in a dynamically self-consistent way,
the torque arising from stellar wind with complex magnetic fields for a large variety of stars.
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However, no consensual parametrization of fully three-dimensional, non-axisymmetric stellar
wind torques has yet been proposed in the literature.

Furthermore, the growing number of know exoplanets triggered renewed interest in the
recent years in the interactions existing between star and close-in planets (for a recent review,
see Lanza 2014, in this volume). In particular, close-in planets can magnetically interact with
their host, which leads to a direct transfer of angular momentum due to a magnetic link
between the two objects (among numerous other effects as well, see, e.g., Cuntz et al. 2000;
Zarka 2007; Scharf 2010; Vidotto et al. 2014, and references there in). Several analytical
studies (e.g., Lanza 2009; Laine & Lin 2011, and references therein) have been pursued in
the past years to better constrain our understanding of this angular momentum transfer.
In a recent work, Strugarek et al. (2014) explored the efficiency of the angular momentum
transfer as a function of the relative position of the orbiting planet in the stellar wind and
of the topology of the planetary field with 2.5D simulations. In order to validate the trends
they found, 3D numerical simulations taking into account the adequate geometry of the
problem are needed (see Cohen et al. 2009, for an example of such global modelling).

We report here an ongoing effort in developing magnetohydrodynamics (MHD ) simu-
lations of the stellar winds of cool stars in three dimensions. We consider one-fluid and ideal
models of stellar winds which are very simple compared to more recent solar wind models
(see, e.g., Oran et al. 2013; Sokolov et al. 2013). However, they inherit important conserva-
tion properties from their 2.5D counterparts (see Strugarek et al. 2012, and section 3.2). We
show in this work that ensuring such conservation properties is mandatory to derive physi-
cally meaningful global trends from grids of numerical simulations. By such, they are thus
of particular interest for our understanding of the gyro-chronology of cool stars. In addition,
we focus here on the numerical difficulties associated with a rotating frame, anticipating
eventual star-planet interactions studies with such stellar wind models.

2. Modelling stellar winds

Following the preliminary work in 2.5D axisymmetric geometry described in (Strugarek et al.
2014), we adapted our stellar wind model to a 3D cartesian geometry. We implemented the
same “3-layer” boundary conditions to improve the conservation properties of our numerical
solution. We use the PLUTO code (Mignone et al. 2007) which solves the following set of
ideal MHD equations:

∂tρ+∇ · (ρv) = 0 (1)

∂tv + v ·∇v +
1

ρ
∇P +

1

ρ
B×∇×B = a , (2)

∂tP + v ·∇P + ρc2s∇ · v = 0 , (3)

∂tB−∇× (v ×B) = 0 , (4)

where ρ is the plasma density, v its velocity, P the gas pressure, B the magnetic field, and a
is composed of gravitational acceleration (which is time-independent) and the Coriolis and

centrifugal forces of a rotating frame Ω0. The sound speed is given by cs =
√

γ P/ρ, with γ
the adiabatic exponent. We use an ideal gas equation of state

ρε = P/ (γ − 1) , (5)
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where ε is the specific internal energy. We use an hll solver combined with a minmod limiter.
A second-order Runge-Kutta is used for the time evolution, resulting in an overall second-
order accurate numerical method. The solenoidality of the magnetic field is ensured with a
constrained transport method in the static grid version of the model, and with Powell’s eight
waves method in the AMR version (see Mignone et al. 2012). We refer the interested reader
to (Mignone et al. 2007) for an extensive description of the various methods that PLUTO
offers.

The structure of the wind directly depends on three velocity ratios defined at the surface
of the star (see, e.g., Matt et al. 2012), and on the ratio of specific heats γ. The three
characteristic velocities are the sound speed cs, the Alfvén speed vA = B⋆/

√
4πρ⋆ (where

B⋆ is the magnetic field strength at the stellar equator) and the rotation speed vrot (in this
work, the star is considered to rotate as a solid body). Their ratios to the escape velocity

vesc =
√

2GM⋆/R⋆ (with M⋆ the stellar mass and R⋆ the stellar radius) at the stellar surface
then define a unique stellar wind solution. We choose for this study the same parameters as
in Strugarek et al. (2014), which we report in table .1. We also compute the rotation rates
associated with these velocities at the surface of the star and deduce the equivalent orbital
radius of a virtual planet (for a characteristic velocity V , the equivalent normalized orbital
radius rorb/R⋆ can be approximated by (GM⋆/R⋆V

2)1/3, see Equation 6).

Table .1: Fiducial stellar wind parameters

Parameter Value Equivalent rorb/R⋆

γ 1.05 ...
cs/vesc 0.2599 1.95
vA/vesc 0.3183 1.7
vrot/vesc 0.00303 38

We intend to ultimately use our stellar wind model to study global close-in star-planet
interactions in 3D. We choose a cartesian grid to avoid any future numerical issues that would
be associated with very small grid cells at the stellar surface when using a curvilinear coordi-
nate system with structured grids. The star is located at the center of our three-dimensional
grid. In this work we consider two different static grid sizes to model stellar winds, the higher
resolution being hereafter denoted HR. We also show one preliminary simulation using the
AMR version of the pluto code. In the static version, the cube [−1.5R⋆, 1.5R⋆]

3 centered on
the star is always uniformly discretized, and stretched grids are use in the three directions to
grid the remaining of the domain up to 20R⋆ from the star. The discretization is identical
in the three dimensions.

In order to include a planet in such a stellar wind simulation, one can solve the MHD
equation in a rotating frame rotating at the orbital rotation rate of the planet. The planet
is then nicely at rest in the frame of the grid, and the stellar rotation rate needs just to
be modified accordingly. Considering circular Keplerian orbits and neglecting the orbital
motion of the star, the orbital rotation rate –that we use as the rotation rate of the rotating
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Figure .1: 3D renderings of the modelled stellar winds. The upper panels show cases 1 and
6, and the bottom panels cases 2 and 3 (see table .2). The stellar boundary is labelled by
the orange sphere. The magnetic field lines are shown in blue and the Aflvén surface in
transparent red. The density on the equatorial plane in shown in logarithmic scale, with the
same color map on all the panels.

frame– of a planet located at rorb is given by

Ω0 = ΩP =

√

GM⋆

r3orb
. (6)
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In the following, even though we do not include any planet in the simulations yet, we label the
various rotating frames we considered (listed in Table .2) by their equivalent orbital radius

rorb of the virtual planet. We express it in terms of breakup rotation rate Ωb = (GM⋆/R
3

⋆)
1/2

.

Table .2: Parameters of the stellar wind cases

Case Resolution rorb/R⋆ Ω0/Ωb

1 2253 ∞ 0
2 (HR) 4493 ∞ 0
3 (AMR) 19203 ∞ 0
4 2253 50 0.002
5 2253 10 0.022
6 2253 3 0.136
7 (HR) 4493 3 0.136

3. Global properties of the modelled winds

We first illustrate our modelled stellar wind with three-dimensional visualizations of the
cases 1, 2, 3, and 6 (see table .2) in Figure .1. In all the figures presented throughout this
paper, the results have been transformed to the inertial frame to adequately compare the
various cases.

Interestingly, the addition of a rotating frame seems at first glance to regularize the
solution: the shape of the Alfvén surface (where the wind speed equals the local Alfvén
speed) in case 1 (upper left panel) shows some non-axisymmetric features due to our cartesian
grid whereas in case 6 (upper right panel, rorb = 3R⋆) its looks perfectly axisymmetric.
Nevertheless, despite this apparent regularization, the rotating frame induces significant
(and non-axisymmetric) deviations in the stellar wind solution that could be problematic in
the context of star-planet interactions models. We detail and quantify these deviations in the
following sections. Higher resolution in the case with no rotating frame (lower panels, HR
and AMR cases) clearly tend to reduce the non-axisymmetric aspect of the Alfvén surface.

3.1 Mass and angular momentum loss rates

We first assess the effect of the grid resolution and of the rotating frame on the integrated
properties of the stellar wind. We define the mass and angular momentum loss rates due to
the wind by

Ṁ⋆ =

∮

ρv · dA , (7)

J̇⋆ =

∮

̟

(

vφ − Bφ
vp ·Bp

ρ|vp|2
)

ρv · dA , (8)
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Figure .2: Mass and angular momentum loss rates as a function of the integration box
[s] averaged over a few stellar rotations. The loss rates are normalized to the loss rates
obtained from an equivalent 2.5D axisymmetric model (see Strugarek et al. 2014). The
fiducial resolution cases are shown in solid line, the ’high’ resolution (HR) cases in dashed
lines and the AMR case in dash-dotted line. The various rotating frames are labeled with
different colors.

where
∮

dA represents the integral over a two-dimensional, closed surface. When a steady-
state is reached, integrals (7-8) can be in principle equivalently evaluated on any surface
enclosing the star. For instance we show in Figure .2 the loss rates computed with integrals
over cubes of size 2 s centered on the star (Ṁ⋆ is shown in the left panel, and J̇⋆ in the
right panel). The loss rates are normalized to loss rates obtained from a 2.5D axisymmetric
simulation (see Réville et al. 2014; Strugarek et al. 2014) with a resolution equivalent (in
2D) to the HR cases. We immediately see that the integrals are, in most of the cases,
constant functions of s, indicating that a steady-state is reached and that mass and angular
momentum are conserved in the flow.

The cases with no rotating frame are shown in blue (the solid line represents the fiducial
resolution, the dashed line the ’high’ resolution–HR and the dashed-dotted line the AMR
case). The mass and angular momentum loss rates in the HR cases differ by less than 2%
from the reference 2.5D simulation. The fiducial resolution cases differs from ∼ 10% from
the HR cases, which is a simple consequence of the very coarse resolution that was used in
those cases. When a slowly rotating frame is added (rorb = 50R⋆, magenta lines), only a
marginal difference is observed in both loss rates.

We observe than the mass loss rates are mostly unaffected by the rotating frame: on the
left panel each style of curve (solid and dashed) differ from less than 2% from one another.
The angular momentum loss rate (right panel) is nonetheless severely altered when a rotating
frame is added. The curves are even non-constant (cases with rorb ≤ 10R⋆ in green and red)
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which is a due to the difficulty to get a steady-state for cartesian grids with high rotation rates
Ω0. Higher resolution (dashed red line) seems to help getting rid of those numerical issues,
although in the case of rorb = 3R⋆ the HR resolution should still be increased to adequately
model the stellar wind and obtain a constant angular momentum loss rate consistent with
the cases with no rotating frame.

3.2 Conservation properties

Using the cylindrical coordinates (̟,ϕ, z), and under the assumption of axisymmetry, five
ideal-MHD quantities conserved along each magnetic field line can be defined by (see, e.g.,
Lovelace et al. 1986; Ustyugova et al. 1999)

K(ψ) ≡ ρ
vp ·Bp

|Bp|2
, (9)

Λ(ψ) ≡ ̟

(

vϕ − Bϕ
Bp

ρvp

)

= ̟

(

vϕ − Bϕ

K

)

, (10)

Ωe(ψ) ≡ 1

̟

(

vϕ − vp
Bp

Bϕ

)

=
1

̟

(

vϕ − KBϕ

ρ

)

, (11)

S(ψ) ≡ P ρ−γ , (12)

E(ψ) ≡ 1

2

(

v2

p − v2ϕ
)

+
γ

γ − 1
ργ−1S − GM⋆

r
+ vϕBϕ

K

ρ
, (13)

where ψ is a magnetic field line label and the subscript ’p’ stands for the poloidal component
of a vector field. Our initial and boundary conditions do not introduce a priori any non-
axisymmetry (except maybe at the outer boundary). These five quantities should hence
be conserved with a perfect model. The non-conservation can only arise from numerical
errors, in our case principally due to the use of a cartesian grid which is not well adapted
to the spherical geometry of the problem. In order to asses quantitatively the conservation
properties of our 3D model, we compute on each three-dimensional field line the relative
deviation from the field-line averaged conserved quantity Q, defined by

Q̄ ≡
∣

∣

∣

∣

Q− 〈Q〉fl
〈Q〉fl

∣

∣

∣

∣

, (14)

where 〈〉fl stands for the average over one three-dimensional field line. We sample the surface
of the star with 20 points in latitude and 3 points in longitude as seed points of magnetic
field lines. We obtain in each cases approximately the same number of closed and open field
lines.

We show in Figure .3 the normalized probability density function (PDF) of the relative
deviation of conserved quantities for cases 1, 5, and 6. We restricted our analysis to the
open field lines region, where the mass and angular momentum of the star are extracted by
the wind. The PDFs of K̄, S̄, and Ē peak well below one and do not extend significantly
above 10%. These three quantities can be considered, as a result, to be well conserved by
our model. The PDFs of Λ̄ and Ω̄e peak closer to 1 (above 10%) in the cases with a rotating
frame (green and red). This is another way to see the numerical difficulty that is naturally
imposed by our cartesian grid. The degree of non-conservation is sufficiently high so that the
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wind models with rorb = 3R⋆ and rorb = 10R⋆ cannot be used reliably to, e.g., derive general
trends about stellar wind torques and mass loss rates. Note nevertheless that, at first glance,
the solution rorb = 3Rstar seemed perfectly well behaved (see Figure .1). The estimation of
the angular momentum loss rate based on an integral over this regular Alfvén surface could
not, in this case, provide an accurate calculation because of the lack of conservation of Λ we
just highlighted.

We give more extensive statistical properties of the distributions of deviations in the
open field lines region in table .3 for all the cases listed in table .2. It immediately appears
that in all cases, the mean deviation (and its standard deviation) is the highest for Λ̄ and Ω̄e.
The HR cases bring a significant improvement in the conservation of those two quantities, and
in particular in their standard deviation. This shows that with a sufficiently high resolution,
the angular momentum loss rate calculation could be robustly estimated from such three-
dimensional models. The lack of conservation of Λ in stellar wind models is also generally
accompanied by large longitudinal variations of the rotation rate of the wind. In the context
of magnetic star-planet interactions, the rotation of the wind is naturally key to assess the
eventual effect on the planetary magnetosphere and on the secular evolution of the system.
As a consequence, only stellar wind models with acceptable conservation properties should
be used to assess the effects of those interactions.

4. Conclusions

We have presented a comparative study of simple, 3D models of the stellar wind of cool
stars. We focused our study on the numerical problems that can arise from the use of (i) a
cartesian grid and (ii) a (fast) rotating frame in the context of star-planet interactions.

Our results suggest that, without sufficient spatial resolution, a rotating frame with
a rotation rate higher than the stellar rotation rate should be avoided. The numerical
experiments presented here were conducted for a small stellar rotation rate. Because of this
small rotation rate, small errors arising from the cartesian grid can lead to dramatic changes
in the stellar wind solution. We expect the issues encountered in this work to be significantly
lower in cases with higher stellar rotation rates, and adaptative mesh refinement seems to
be an adequate, generic solution to overcome those numerical difficulties.
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Ē 6.4 10−4 1.5 10−3 1.9 101 4.8 102

rorb = 3R⋆ (HR)

K̄ 5.3 10−3 8.0 10−3 2.0 101 6.2 102

Λ̄ 4.3 10−2 3.7 10−2 1.7 5.2
Ω̄e 2.8 10−2 2.7 10−2 1.8 4.9
S̄ 3.1 10−4 5.5 10−4 1.3 101 3.1 102
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Figure .3: Normalized probability distribution functions of the relative deviations of the
conserved quantities (9-13) for open field lines. Case 1 is in blue (rorb = ∞), case 5 in green
(rorb = 10R⋆) and case 6 in red (rorb = 3R⋆). The three cases were run with the fiducial
resolution (see table .2).
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