A Search for α N₂ on Pluto and Eris Jason C. Cook^{1,2}, Dale P. Cruikshank¹, ¹NASA Ames Research Center, MS 245-6, Moffett Field, CA, 94035 (Jason.C.Cook@nasa.gov), ²SETI Institute, Mountain View, CA, USA

Laboratory studies of N_2 ice near 2.15 μm show that the two phases of solid N_2 ice have different spectroscopic characteristics [1]. At temperatures > 35.61 K, N_2 is in the β (hexagonal) phase, while at lower temperatures it is in the α (cubic) phase. The N_2 band has been detected on Triton and Pluto [2, 3], but not on other Kuiper Belt Objects (KBOs). The observed band shapes on Triton and Pluto are consistent with β N_2 ice. However, if α N_2 is present as a minor fraction of the total N_2 abundance, then the 2.15 μ m band would be a spectral blend of α N_2 and β N_2 .

Visible and near-infrared spectra have shown that the band positions and depths of N_2 , CO and CH_4 change with rotation [4, 5]. These variations support other studies that have also shown the surface to be heterogeneous [e.g., 6]. [5] showed that CH_4 absorption features have a weak and strong component and that the strong CH_4 bands are correlated with Pluto's visible light curve. Both the greatest CH_4 band depth and visible light curve are maximum around 215° E. longitude [5]. The N_2 band, however, is deepest near 110° E. longitude and is nearly constant through 200° E. longitude while CO has a maximum near 170° E. longitude. This suggests that N_2 , CO and the weak CH_4 are isolated from the source of the strong CH_4 bands.

We will present analysis of Pluto's N₂ band from Gemini North/NIRI in 2003 and 2004, Gemini North/NIRI+Altair in 2005 and 2008, and Gemini South/GNIRS in 2004. These observations cover the rotation of Pluto in approximately 40° longitudinal intervals. We analyze the data by producing Hapke models and finding which combination of materials produce a model spectrum that best fits the observations by minimizing χ^2 . Fitting the N₂ band is done in a two step process. First, a model is made of Pluto's spectrum from 2.10 to 2.23 μ m while the N₂ region (2.12-2.17 μ m) is masked out. The data are fit to a Hapke model assuming a salt-and-pepper mixture of pure CH₄ and diluted CH₄ at 40 K. The optical constants for pure CH₄ are shifted to shorter wavelengths by about 4 nm and are used to substitute the optical constants for diluted CH₄. In addition to the surface components, the model also includes the contribution of gaseous CH₄. In the Gemini North observations it is difficult to know whether or not the gaseous CH₄ is telluric or from Pluto because of the low resolving power blends the CH₄ features. In the Gemini South observations, the lines are more distinguished and mostly appear as sharp features near the minimum of the 2.20 μ m CH₄ band. This model is used to remove the slope behind the N_2 band and CH_4 absorption feature near 2.2 μ m. The normalized spectrum is then fit by either (i) β N_2 only, or (ii) a mix of α and β N_2 . Preliminary results show that α N_2 may be present at the 20% level at longitudes corresponding to areas of deepest N_2 absorption [5].

The arrival of *New Horizons* at Pluto in 2015 will not be able to clearly detect α N₂. The LEISA instrument on *New Horizons* has a resolving power of 250 from 1.25-2.50 μ m, and a high resolution ($\lambda/\Delta\lambda\sim500$) region at 2.10-2.25 μ m designed to map out the location and abundance of N₂. While *New Horizons* will obtain superior spatial information, its spectral resolution is similar to the NIRI+Altair observations analyzed here.

The 2.15 μ m N₂ ice band has not been detected on any other KBO, but evidence exists for its presence on Makemake and Eris [e.g., 7–9]. The band centers of CH₄ appear shifted to shorter wavelengths. On Pluto and Triton, this indicates that CH₄ is diluted in N₂. In the case of Eris, which has a heliocentric distance of ~97 AU, its blackbody equilibrium temperature would be 29 K if it had zero albedo. However, Eris' albedo is closer to 60-80% [10–12] and therefore it has a blackbody temperature closer to 19 to 23 K. If N₂ is present on Eris, then it is most likely in the α phase. We present analysis based on the high resolution ($\lambda/\Delta\lambda\sim5000$) data from [9]. We estimate that Eris' surface could be as much as 99.75% α N₂ and still not be detected in these data.

JCC would like to acknowledge that this research was supported by an appointment to the NASA Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

References

- [1] W. M. Grundy, et al., 1993, Icarus, 105, 254–258.
- [2] D. P. Cruikshank, et al., 1984, Icarus, 58, 293-305.
- [3] T. C. Owen, et al., 1993, Science, 261, 745–748.
- [4] W. M. Grundy and U. Fink, 1996, Icarus, 124, 329-343.
- [5] W. M. Grundy and M. W. Buie, 2001, *Icarus*, 153, 248– 263
- [6] M. W. Buie, et al., 1992, Icarus, 97, 211-227.
- [7] S. C. Tegler, et al., 2008, *Icarus*, 195, 844–850.
- [8] M. R. Abernathy, et al., 2009, *Icarus*, 199, 520–525.
- [9] A. Alvarez-Candal, et al., 2011, A&A, in review.
- [10] F. Bertoldi, et al., 2006, Nature, 439, 563-564.
- [11] M. E. Brown, et al., 2006, ApJL, 643, L61–L63.
- [12] J. Stansberry, et al., 2008. In The Solar System Beyond Neptune, pages 161–179.