

Macroclumping in winds of massive stars

Lidia M. Oskinova & Wolf-Rainer Hamann Universität Potsdam. Germanv

Clumping: micro versus macro

The "microclumping" approximation:

- (included in various codes: CMFGEN, PoWR, Munich codes ...) Assumptions
- · Clumps are optically thin at all frequencies
- · For frequencies of large opacity, this implies unrealistically small scales of the clumps
- In the winds of O- and WR stars, high opacities occur especially in the resonance lines
 - in the X-ray domain (K-shell absorption)

Photon mean free path

maximum size for opt. thin clumps Example: ζ Puppis model at typical point in the wind (at $\frac{1}{2}v_{\infty}$)

C IV resonance line	4*10 ⁻⁴ R _*
P V resonance line	0.1 R _*
He II 1 - 2 at 304 Å	3*10 ⁻⁶ R _*
K-shell edges (X-ray)	2*10 ⁻⁴ R _*

- · A large number of clumps are statistically distributed
- At a given frequency and location, all clumps have the optical diameter $au_{
 m clump}$
- Macroclumping reduces the effective opacity by a factor ^{1-e}/₁
- For $\tau_{\text{clump}} \gg 1$, this implies a drastic reduction by a factor of τ_{clump} !
- The reduction of opacity is already significant for moderate $\tau_{clump} \approx 1$
- Specification of the clump size:
- Clumps are conserved entities (→eq. of continuity)
- the average separation of clumps is, with a parameter L_0 , $L(r) = L_0 \left(r^2 \frac{v(r)}{r} \right)$ Realistic choices for L₀ are of the order of 1 R_{*}
- from 1-D hydro (Feldmeier et al. 1997): radial shells launched on \leq dynamical timescale \rightarrow $L_0 \leq 1 R_*$
- from Line Profile Variability in WR stars: ≳ 10⁴ clumps launched per hour (Lépine & Moffatt 1999) → $L_0 \approx 0.25 R_s$
- from modeling X-ray line profiles (Oskinova et al. 2006): $L_0 \leq 1 R_*$

Macroclumping can mask higher mass-loss rates

Implementation in the Potsdam Wolf-Rayet (PoWR) code

- · Macroclumping only accounted in the Formal Integral
- · Effective opacity, reduced due to macroclumping effect
- · Non-LTE source function as from microclumping model, i.e. feedback of macroclumping effects on population numbers neglected

Macroclumping can solve the mass-loss rate discrepancy

- The P V resonance line gives >10 times smaller O-star mass-loss rates than H α and radio free-free emission ! (Fullerton, Massa & Prinja 2006)
- Accounting only for *microclumping* → incredibly small filling factors to reconcile the ρ^2 diagnostics (H α line, radio free-free emission) with such small mass loss Accounting for macroclumping effect → weaker P V resonance line, reconciling it
- with the ρ^2 diagnostics without a reduction of the mass-loss rate

Figure: Observation of ζ Pup and two synthetic profiles from the same model, but with and without macroclumping effect, respectively

Macroclumping explains how X-rays from massive-star winds escape

- In soft X-rays, stellar winds should be opaque due to Kshell absorption (left Figure, upper panel: radius of optical depth unity for a ζ Pup model)
- From the X- ray line widths ($\frac{1}{2}v_{\infty}$, typically) and from hydrodynamical models, X-rays are expected to be
- produced in the lower part of the wind The reduction of the effective opacity by
- macroclumping can explain how a signicant fraction of the X-rays can emerge (left Figure, lower panel)
- When clumps are optically thick, the effective opacity becomes grey; this can explain the observed similarity between different X-ray line profiles
- Observed symmetric X-ray line profiles can be reproduced best with macroclumps that are flat like pancakes ("broken-shell model", right Figure) Oskinova et al. 2004

