
Stellar Masses

Arguably the mass of a star is its most important prop-
erty. In this article we will answer four questions con-
cerning stellar masses. How do the properties of stars
depend upon their masses? What is the smallest and
largest mass possible for a star, and why? How do we
determine the masses of stars? What distribution of
stellar masses occurs when stars form, and why?

Dependence of Other Stellar Parameters

on Mass

The Russell-Vogt theorem states that if we know a star’s
mass and its chemical composition, we can use the laws
of physics to determine all of its other properties: its
luminosity, its radius, its temperature and density pro-
files, and how these properties change with time. (We
know that this is a slight simplification; for instance,
the amount of net angular momentum will also affect a
star’s structure and evolution). Compared to the possi-
ble range of masses a star may have (0.08–150 M⊙),
there is only modest variation possible in the initial
composition, and thus it is primarily a star’s mass at
birth which determines the basic essentials of its struc-
ture and future life.

Some of the properties of stars are given in Table 1 as
a function of stellar mass for stars on the main-sequence,
the core H-burning phase that accounts for 90% of a
star’s life. These values have been taken from stellar
models computed with a composition that is initially
solar. We list the stellar parameters at the beginning
and end of the main-sequence lifetimes, except for the
lowest mass stars, for which we adopt the parameters
corresponding to an age of 1 Gyr, by which time these
stars are stably burning hydrogen.

Generally the behavior of the stellar parameters
with stellar mass is quite different for the higher
mass stars (25–120 M⊙) than for solar-type stars (0.8-
1.2 M⊙). The dependence of luminosity on stellar mass
is shown in Figure 1. This mass-luminosity relationship

is considered one of the most fundamental descriptions
of stellar properties; the ability to reproduce this by
stellar models was one of the great vindications of the-
ory. Eddington first demonstrated that radiative dif-
fusion in stars requires that the stellar luminosity will
depend upon mass roughly as the fourth power; i.e.,
L ∼ M4. However, it is clear from Figure 1 that no
single exponent describes the dependence of luminosity
on mass over the entire range of stellar masses. If we
consider different mass-ranges we would find that the
following are good approximations:

L ∼ M1.6(M ≈ 100M⊙)

L ∼ M3.1(M ≈ 10M⊙)

Figure 1: The mass-luminosity relationship as predicted
by stellar models is shown by the solid line for stars with
zero age, and by the dotted line for stars at the end
of their main-sequence lifetimes, for masses of 0.8 M⊙

(log M = −0.1) and greater. Below that mass, the
curve shown is for models with an age of 1 Gyr, as stars
of this age have begun to burn hydrogen stably with
constant luminosity. (The vast majority of low-mass
stars will be at least that old.) The points show the
masses and luminosities of “real” stars for comparison,
with the crosses denoting the best determinations from
double-lined spectroscopic binaries, and the open circles
denoting the best determinations from visual binaries.

L ∼ M4.7(M ≈ 1M⊙)

and
L ∼ M2.7(M ≈ 0.1M⊙)

The reason for the drastic changes seen in the mass-
luminosity relation with mass are primarily due to the
different opacity sources at work. At the high interior
temperatures that characterize high mass stars, all of
the atoms are fully ionized and scattering of X-rays
from free electrons dominates the opacity, with no tem-
perature dependence. At lower temperatures, atoms are
only partially ionized, and there is a strong temperature
dependence in the number of ions. At the very cool
temperatures that characterize the lowest mass stars,
molecular hydrogen (H2) forms, removing the dominant
opacity source for solar-type stars, H−.

Stellar lifetimes τms as a function of mass also show
a marked change from solar-type star to high-mass
stars, as evidenced by Table 1. For solar-type stars
the main-sequence lifetime changes rapidly with mass,
while for higher mass stars the change is far more
modest with mass. For most stars, roughly the same
fraction of a star’s mass (10%) is involved in nuclear
burning regardless of mass, and so the relative main-
sequence lifetime τms will be roughly proportional to
the mass (the amount of fuel) and inversely propor-
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Table 1: Properties of Main-Sequence Stars as a Function of Stellar Mass
Beginning of Main-Sequence End of Main-Sequence

Mass τms Teff Spectral log L/L⊙ Rad. Teff Spectral log L/L⊙ Rad.
(◦K) Type (R⊙) (◦K) Type (R⊙)

120 M⊙ 2.56 Myr 53,300 O3 V +6.25 16 32,900 O9 I +6.34 48
60 M⊙ 3.45 Myr 48,200 O4 V +5.73 10 12,000 B7 I +5.99 230
25 M⊙ 6.51 Myr 37,900 O8 V +5.29 6.5 29,000 B0 I +5.29 18
12 M⊙ 16.0 Myr 28,000 B0.2 V +4.01 4.3 24,400 B0.5 I +4.46 9.5
5 M⊙ 94.5 Myr 17,200 B5 V +2.74 2.7 15,100 B5 I +3.15 5.5

2.5 M⊙ 585 Myr 10,700 B9 V +1.60 1.8 9,000 A2 III +1.92 3.8
1.25 M⊙ 4.91 Gyr 6,380 F5 V +0.32 1.2 6,070 G0 V +0.66 1.9
1.0 M⊙ 9.84 Gyr 5,640 G8 V −0.16 0.9 5,790 G2 V +0.22 1.3
0.8 M⊙ 25.0 Gyr 4,860 K2 V −0.61 0.7 5,360 K0 V −0.09 1.1
0.5 M⊙ 100 Gyr 3,890 M0 V −1.42 0.4 — — — —
0.2 M⊙ 4,000 Gyr 3,300 M4 V −2.2 : 0.2 — — — —
0.1 M⊙ 10,000 Gyr 2,900 M7 V −3.0 : 0.1 — — — —

tional to the luminosity (how quickly the fuel is con-
sumed); i.e., τms ∼ M/L. Given the mass-luminosity
relations above, we can thus estimate the dependence
of lifetime on mass as τms ∼ M−3.7 for solar-type stars,
and τms ∼ M−0.6 for very high-mass stars. This rule-
of-thumb breaks down for the lowest mass stars, as the
stars are fully convective, and the hydrogen-burning
main-sequence lasts a good deal longer than one would
expect. As shown in Table 1, a 0.1 M⊙ star will last 10
trillion years (1.0× 1013 yr) in a core-H burning phase,
roughly 1000 times as long as the sun will, rather than
the factor of 100 that one would expect, since the entire
star provides the nuclear fuel.

During the main-sequence the highest mass stars
lose a significant fraction of their mass due to stellar
winds. A star that begins life with 120 M⊙ star will
lose 50 M⊙ (40%) of its mass, while a 60 M⊙ will lose
12 M⊙ (20%), by the end of its main-sequence life.
Below 25 M⊙ the amount of mass lost during main-
sequence evolution is negligible, although stellar winds
do effect the evolution of even solar-type stars by carry-
ing off angular momentum. Such mass-loss is expected
to scale with metallicity and thus will be less significant
in galaxies of lower metallicity.

It is inappropriate to speak of a spectral-type to
mass relationship for higher-mass stars: stellar evolu-
tion results in a progression from higher effective tem-
peratures to cooler during the core-H burning lifetime,
and during this evolution stars of different masses will
pass through a particular spectral type “stage”. For
lower mass main-sequence stars this is not true, and
there is only a slight change of spectral-type with evo-
lution (i.e., little change of the effective temperature).
For example, a star which is spectroscopically classified
as “O4 V” star may be a zero-age 60 M⊙ star, or a
slightly older (0.5 Myr) 85 M⊙ star, but all stars of
spectral type G2 V will have a mass roughly that of the
sun’s.

Range of Stellar Masses: the Lowest and

Highest Mass Stars

The masses of stars span the range of 0.08 to 150 (or
more) times the mass of the sun.

At the low mass end, the 0.08 M⊙ limit is set by
the stellar core not being hot enough to ignite hydro-
gen stably. Objects with masses slightly below this
limit are called brown dwarfs, and are “star-like” in the
sense that nuclear burning of deuterium occurs in their
core. Below a mass of 0.015 M⊙ (roughly 16 times the
mass of Jupiter) not even deuterium burning can oc-
cur, and these objects are perhaps best called planets.
Thus there is a natural lower limit to what constitutes
a star, although we expect that the mass function (dis-
cussed below) should be unaware of this division. We
note that the distinction between brown dwarfs and
bona fide stars is subtle in the following sense: both
low-mass stars and brown dwarfs burn primordial deu-
terium at first, but a “real” star will “eventually” settle
down to stable H-burning; we expect that in the case
of a 0.08 M⊙ star that this will take approximately a
billion years (1 Gyr).

At the other extreme, we do not understand what, if
anything, limits how large a mass that a star may have.
At one time it was thought that radiation pressure act-
ing on grains limited how large a star could form, but
we now understand that disks play an important role in
the formation of stars. There may be sufficient shield-
ing by the inner part of the disk to mitigate the effects
of radiation pressure. It is not clear at this time what
role the mergers of protostellar clumps may play in the
formation of stars. If the role is appreciable, then there
may be no natural limit to how massive a star may
actually form.

Even if star-formation processes fail to limit the
mass of a star, other processes may. Eddington pro-
posed in 1926 that stars more massive than some
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amount would be pulsationally unstable, and should
blow off their outer layers, thus limiting their mass.
Early estimates of this limit were as low as 60 M⊙.
Modern estimates, however, place this limit as high as
440 M⊙, although this is still based upon the same
classical perturbation linerarization methods used by
Eddington. Recent “nonlinear” analysis (i.e., direct nu-
merical integration of the equations of stellar structure)
suggest that the mass-loss from such instabilities would
only be comparable to the mass-loss of radiatively-
driven stellar winds in any event.

In this context it is interesting to note that the high-
est mass stars we know do all show signs of prodigious
mass loss. The highest mass main-sequence stars known
are located in the R136 cluster at the heart of the 30
Doradus Nebula in the Large Magellanic Cloud. These
stars have masses which have been conservatively esti-
mated as being as high as 155 M⊙. Spectroscopically
the eight most massive of these stars show evidence of
extremely high mass-loss rates (mimicking the appear-
ance of Wolf-Rayet stars), and so one could argue that
indeed these stars are not “stable” in the sense that
they are losing a considerable amount of matter.

The luminosities of the most luminous R136 stars
are 106.6L⊙. Other stars which are of comparable lumi-
nosity include HD 5980, a Wolf-Rayet star in the SMC;
η Carina, a Luminous Blue Variable (LBV) in the Milky
Way; Sk−67◦ 211, an O3 III star in the LMC; and the
Pistol Star, an LBV located near the Galactic Center. It
is hard to determine masses for LBVs and Wolf-Rayet
stars, as these are in a He-burning phase, where the
interior models (and hence the mass-luminosity rela-
tionship) for massive stars are quite uncertain, but it is
clear that these stars evolved from stars of mass simi-
lar to that of the highest mass R136 stars. The mass
inferred for the main-sequence star Sk−67◦ 211 is also
like that of the R136 stars, suggesting that the stars in
R136 do not have some kind of special origin. Stud-
ies of the youngest OB associations and clusters (i.e.,
young enough so that not even the highest mass stars
would have evolved) show that the richer the cluster is
in stars, the higher the mass of the highest mass star
seen. We now understand that although physics may
indeed impose a limit on how massive a star may be,
we have not yet encountered this limit in nature.

Determination of Stellar Masses

How do we determine stellar masses? There are two
basic ways: (1) direct determination of masses obser-
vationally using binaries, and (2) inference of stellar
masses using models.

Stellar Binaries

Simple Newtonian mechanics, specifically Kepler’s
Third Law of Planetary Motion, allow us to directly
determine the masses of stars in some binary star sys-
tems.

“Double-lined” spectroscopic binaries are stars
whose spectra show the signature of two stars. The or-
bital periods of these systems are usually a few days or
months, and the line-of-sight (radial) velocities of each
component can be directly measured as the Doppler
effect causes the spectral lines of one star to first ap-
pear blue-shifted, and then red-shifted relative to the
lines’ average position. Masses can be determined di-

rectly if the orbital inclination can also be found via
light variations (i.e., eclipsing or ellipsoidal) or by the
direct resolution of such systems through techniques
such as speckle imaging or long-baseline interferometry.
The masses and luminosities determined from the best,
well-separated binaries are shown in Figure 1, and we
see that the mass-luminosity relationship inferred from
such systems is in excellent agreement with that pre-
dicted by modern stellar interior models.

Missing from the figure are any high mass stars;
many of these systems are in physical contact or are
sufficiently close to have undergone some mass trans-
fer. Searches for high mass spectroscopic binaries whose
components are cleanly detached are continuing.

For visual binaries, masses can be determined if the
period is short enough to be observed and the distance
to the system is known. However, the distance needs
to be known to high accuracy for the method to yield
useful results: a 7% error in the parallax of the sys-
tem leads to a 20% accuracy in the masses. There are
only 14 systems for which good radial-velocity orbits
and parallaxes are known, and we include these data in
Figure 1. New parallax determinations with the Hippar-

cos satellite will provide improved data on many more
systems. Since the orbital periods of these visual bina-
ries are tens or even hundreds of years, reliable mea-
surements over a substantial time period are needed for
orbit determinations. High resolution imaging studies
with HST or new ground-based techniques are provid-
ing important new fundamental data on such systems.

Stellar Models

If the effective temperature and luminosity of a star
are known (from spectroscopic observations of a star
whose distance is known, either from parallax or from
membership in a cluster with a known distance), then
stellar interior models can be used to approximate the
star’s mass. This method is the basis for most of the
masses inferred in determining the initial mass function
(discussed in the next section).

It is also possible to estimate a star’s mass from stel-
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lar atmosphere models. Again, spectroscopy is needed
of a star with known distance. By fitting the stellar
lines and comparison to model atmospheres, it is pos-
sible to determine the effective temperature Teff and
surface gravity g. Since the star’s luminosity L is also
known, it is possible to determine the stellar radius R
since L ∼ R2

× T 4

eff . The mass of the star can then be

found since g ∼ M/R2.
For the most massive stars, there appears to be a sig-

nificant “mass discrepancy” between the masses derived
from stellar atmospheres and stellar interiors models,
stellar atmospheres predicting masses which are system-
atically smaller. The reason for this discrepancy is un-
known at present, but is largest for the most luminous,
massive supergiants, for which there may be factors of
2 differences between the two methods. Attempts to re-
solve this discrepancy by means of spectroscopic bina-
ries have been frustrated by the same lack of identified
high mass “detached” systems described above.

Distribution of Stellar Masses

If we were to count stars as a function of mass in the
solar neighborhood, we would find that there were far
more low mass stars than high mass stars. The rea-
sons for this are basically two-fold. Low-mass stars live
much longer than do high mass stars, and so have accu-
mulated over most of the life of the Galaxy, while high
mass stars quickly consume their fuel and die. The sec-
ond reason, however, is that in a typical star-forming
event many more low mass stars are formed than are
high mass ones.

Knowing the distribution of stellar masses that is
obtained when stars form from clouds of gas and dust
in space is important for two reasons. First, because the
light observed from star clusters and galaxies is dom-
inated by a few of the brightest stars (the tip), it is
important to know how many low mass stars are asso-
ciated with the iceberg as a whole. Indeed in a stel-
lar system such as our own Milky Way galaxy, most of
the observed luminosity comes from stars greater than
10 M⊙, while most of the mass is locked up in stars with
masses below 1 M⊙. Secondly, the distribution of stel-
lar masses at birth (the initial mass function, or IMF)
provides clues into the processes of stellar formation.
Changes in the shape of this distribution function with
mass provide evidence for the critical scales associated
with the star formation process.

In general the IMF can be thought of simply as
a probability function φ(M), representing the likeli-
hood of forming a star with a mass between M and
M + dM . In 1955 Salpeter found that the IMF of stars
near the sun was well-represented as a power–law, with
φ(M) ∼ M−2.35. Modern estimates from studies of OB
associations in the Milky Way and LMC suggest that
for stars of mass greater than 5 M⊙ the IMF is in-

Figure 2: The universality of the initial mass function
for high mass stars is demonstrated in this figure show-
ing the IMF exponent γ (where the distribution func-
tion φ(M) ∼ Mγ) for massive stars in the OB associa-
tions of the SMC, LMC, and Milky Way. The dashed
line is for a Salpeter exponent of -2.35. The metallicities
change by a factor of 4 between these three systems.

deed very similar to Salpeter’s result, with an exponent
of −2.3 ± 0.3 obtaining regardless of cluster density or
metallicity (Figure 2).

For intermediate- and low-mass stars, studies of the
IMF have traditionally been done using volume-limited
samples of stars found in neighborhood of the sun.
Using a variety of techniques (photometric, spectro-
scopic, and parallactic) a luminosity function can be
constructed for an unbiased sample of stars. Adopt-
ing a mass–luminosity relationship appropriate for the
sample in question then allows one to transform the
luminosity function into a mass function. In practice,
one must take into account the metallicity and evolu-
tionary state of the sample, as well as correct for the
relative life-times. The derived IMFs will also depend
upon what assumptions have been made about the star-
formation of the region, with increased dependence at
lower masses, where the star-formation history over the
entire life of the galaxy is relevant. Such studies now
suggest that the power-law may be somewhat less steep
for 1–5 M⊙ stars than for stars of higher mass. For
stars of even lower mass, studies are hampered by the
additional uncertainty of the mass–luminosity relation-
ship for very cool objects. Most work is consistent with
φ(M) ∼ M−1.0±0.5 over the range 0.1–1 M⊙. There is
disagreement, though, as to whether or not the num-
ber of low-mass stars that are formed continues to rise
to lower and lower masses, or whether the relationship
flattens out or even turns over somewhere near the low-
mass end of this range.

Another technique that has been exploited in de-
termining the IMF is the use of star clusters in which
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all stars appear to have roughly the same age. By us-
ing such coeval groups of stars, problems inherent in
correcting for star-forming histories are eliminated, al-
though other concerns (such as dynamical evolution)
need to be addressed. Studies of globular clusters with
ages greater than 1 Gyr derive IMFs consistent with the
field down to a limiting masses of 0.2–0.3 M⊙. Open
clusters with ages 30–500 Myr, perhaps the best place
to constrain the IMF near 1 M⊙, confirm that the IMF
is less steep than at masses greater than 5 M⊙. Re-
cent studies of nearby young open clusters such as the
Pleiades and α Per have begun to probe the IMF down
below the hydrogen burning limit. Finally, by study-
ing clusters still embedded in the molecular cloud cores
from which stars form, we can attempt to relate dif-
ferent outcomes of the star–forming process with the
initial conditions of formation. Thus far, IMFs derived
from a wide variety of stellar populations in the Milky
Way and local group galaxies are consistent with having
been drawn from the same distribution as stars found
in the neighborhood of the sun. However, these com-
parisons are still in their infancy: there could be signif-
icant, more subtle variations present in the IMF that
have gone undetected.

We have not yet touched at all upon the physical
causes of the IMF: when an interstellar cloud of dust
and gas collapses, what processes dominate and result
in the distribution of masses we would observe at some
future time? One might naively expect that the domi-
nant physics could be readily deduced from the observed
IMF, but this turns out not to be the case, primarily
because the IMF appears to be so featureless. Instead,
the observed IMF can only be used to constrain star-
formation theories at present. Power-law distributions
may result from a variety of different scenarios, includ-
ing so-called “fragmentation” theories. The earliest of
these was proposed in 1953 when Hoyle suggested that
the Jeans mass (the minimum mass needed for gravi-
tational collapse) could result in a hierarchical distri-
bution of masses. The Jeans mass depends upon both
temperature and density, and as a cloud collapses the
density will increase, while radiation from newly formed
stars controls the gas temperature. However, it is not
clear whether this elegant model would apply in a real
molecular cloud. Alternatively, the agglomeration of
protostellar clumps has been suggested as a way to pro-
duce a power law. Yet another theory involves feedback
from the formation process itself: ignition of a power-
ful outflow from the protostar might halt further accre-
tion once a characteristic mass has been reached. The
resulting distribution of stellar masses would then de-
pend upon the ranges of initial values of a variety of
physical parameters. A crucial component in evaluat-
ing current theories of star-formation is whether or not
the IMF is “scale free” (such would be the case if it
were well described by a single power law), or if there

is a characteristic mass scale, as is suggested by current
observational evidence that the IMF begins to flatten
out around 1 M⊙. Solid observational knowledge of
the shape of the IMF at even lower masses, and under
differing physical conditions, is a prerequisite to under-
standing star formation.
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