The NIRSPEC H-Band Radial Velocity Templates


NIRSPEC

NIRSPEC on Keck II

Introduction and Background

The Keck II NIRSPEC H-band radial velocity (RV) standards found here were obtained with the intent to use in two-dimensional cross-correlation of spectroscopic binaries. Zucker & Mazeh (1994) developed the algorithm to derive RVs of two components simultaneously of composite spectra. Lisa Prato and Michal Simon established a survey in 2000 of pre-main sequence (PMS), single-lined spectroscopic binaries (SB1s). We originally used Zucker & Mazeh's TODCOR software with these template spectra but later developed our own versions of two-dimensional cross-correlation code at Stony Brook by Bender (2006) and at Lowell Observatory by L. Wasserman (see links below).

Our goal is to build up a large sample of PMS double-lined spectroscopic binaries (SB2s) with dynamically measured mass ratios. The precise measurements of mass ratios in young spectroscopic binaries provide critical input for theories of star formation and models of young star evolution.

Most of the standards listed below were used for analysis in the following papers:

We hope you find these spectra useful for your research --- if you do use them, please reference Bender et al. 2005 and/or Prato et al. 2002a.


Observations

All RV templates were obtained with NIRSPEC in high-resolution (R~30,000) mode on the Keck II 10-m telescope on Mauna Kea. The observations were made between 2000 June and 2012 January. Typical integration times ranged from 30 seconds to 240 seconds depending on the seeing conditions and stellar magnitude. The NIRSPEC-5 filter was used for all observations. For all data reduction the software package REDSPEC was used. REDSPEC, written at UCLA by S. Kim, L. Prato, and I. McLean, was created specifically for the analysis of NIRSPEC data. Most of the data reduction was carried out by Dara Norman, Chad Bender, and Lisa Prato. Contributions were also made by Nicole Karnath, Dary Ruiz, Greg Mace, and Viviana Rosero.


Radial Velocity Templates

The radial velocity template downloads can be found below. The object names are linked to files which provide the observed wavelength and normalized flux. The file headers include the JD date of observation, the barycentric RV correction (vbary), the inherent RV (vrad), and the name of the object. To correct the observed wavelength (ol) to a vacuum wavelength (vl) scale, vl = ol * ((vbary - vrad) / c) where c = speed of light.

Plots in pdf (P) and jpeg (J) format are provided for all spectra. Two spectral types are listed in the table below: one from SIMBAD and a second determined here (see also Prato 2007). For the RV values, the spectra headers list the RV from Chubak et al. (2012) if available or else Nidever et al. (2002) if available. Some RVs for very low mass objects were taken from Blake et al. (2010). Otherwise we calculated the RV from one-dimensional cross-correlation with objects of similar spectral type and known RV.


Table of RV Standards

H-Band Radial Velocity Standards
H-Band Radial Velocity Standards
Object PDFJPEG RA Dec Spectral Type Spectral Type BJD UT Date Literature X-corr Old Reference
(J2000) (J2000) SIMBAD This Work (+2450000) of Observation (km/s) (km/s) (km/s)
HD 187013PJ19 43 14.42+58 00 59.82F5F52472.9205602002 Jul 174.214.624.7Duquennoy & Mayor (1991)
HD 16895PJ02 44 11.99+49 13 42.21F7F72623.8344232002 Dec 1524.45323.84-Nidever et al. (2002)
HR 5011PJ13 16 46.52+09 25 26.96G0G02032.8910082003 Sep 07-27.138-29.72-Nidever et al. (2002)
HD 186760PJ19 43 14.42+58 00 59.82G0G02472.9104362002 Jul 17-29.82-28.25 -Duquennoy & Mayor (1991)
HD 196850PJ20 38 40.19+38 38 06.34G0G11715.0543312000 Jun 19-21.107-21.16-21.7Chubak et al. (2012)
HD 4614PJ00 49 06.29+57 48 54.68G0G01917.7537212001 Jan 088.397 8.418.3Chubak et al. (2012)
GJ 160PJ04 05 20.26+22 00 32.05G1G11917.7837782001 Jan 0823.8723.9823.6Duquennoy & Mayor (1991)
GJ 177PJ04 47 36.29-16 56 04.04G1.5G1.51917.7994212001 Jan 0821.6822.08-Duquennoy & Mayor (1991)
HD 76151PJ08 54 17.95-05 26 04.06G2G61917.0363412001 Jan 0732.37632.4731.8Chubak et al. (2012)
HD 1835PJ00 22 51.79-12 12 33.97G3G31917.7306772001 Jan 08-2.280-2.28-2.5Chubak et al. (2012)
BS 5019PJ13 18 24.31-18 18 40.30G6G81917.7306772000 Jun 19-7.844 -7.92 -9.0Chubak et al. (2012)
BS 7368PJ19 23 34.01+33 13 19.07K0K11715.0425022000 Jun 19-21.485-21.49-22.2Chubak et al. (2012)
HD 82443PJ09 32 43.76+26 59 18.70K0K01917.0461342001 Jan 078.398.37 -White et al. (2007)
HD 283750PJ04 36 48.24+27 07 55.90K2K3 1916.9112252001 Jan 0736.0239.8539.6Karatas et al. (2004)
HD 110833PJ12 44 14.55 +51 45 33.49 K3 K1 1714.867355 2000 Jun 19 9.0 10.63 ¯Mazeh et al. (2002)
BS 8085PJ21 06 53.95 +38 44 57.99K5K51703.0322602000 Jun 07-65.841-66.68-65.72Chubak et al. (2012)
GJ 1094PJ07 02 42.92-06 47 57.21K5K2 1917.8685532001 Jan 08-30.526-30.27-31.4Chubak et al. (2012)
HD 97101PJ11 11 05.17 +30 26 45.66 K6 K6 2749.728942 2003 Apr 20 -16.159 -16.59 -14.0 Chubak et al. (2012)
BS 8086PJ21 06 55.26+38 44 31.40K7K71707.1350872000 Jun 11-64.420-64.46-64.69Chubak et al. (2012)
GJ 34bPJ00 49 05.17+57 49 03.77K7K71917.7657692001 Jan 0811.19611.439.8Chubak et al. (2012)
GJ 281PJ07 39 23.04+02 11 01.19 K7K75523.0770082010 Nov 2220.09 18.65-Crockett et al. (2011)
GJ 763PJ19 34 39.84+04 34 57.05M0M01706.0602692000 Jun 10-51.6-63.16-60.7Wilson (1953)
GJ405PJ10 55 50.21+56 02 13.59 M2M35601.9467282011 Feb 09-12.09-
GJ 752aPJ19 16 55.56+05 10 08.05M2M21706.0376602000 Jun 1035.73035.7834.1Chubak et al. (2012)
GJ 436PJ11 42 11.18+26 42 22.64M2.5M2.51915.1507852001 Jan 059.54410.257.8Chubak et al. (2012)
GJ 15aPJ00 18 22.89+44 01 22.63M3M3 1707.1389522000 Jun 1111.81710.899.6Chubak et al. (2012)
GJ 213PJ05 42 09.27 +12 29 21.62 M4 M4.5 1917.970761 2001 Jan 08 106.040 106.57 104.0 Chubak et al. (2012)
GJ 402PJ10 50 52.03+06 48 29.23M4M41915.0507842001 Jan 05-0.794-0.57-3.1Chubak et al. (2012)
GJ 275.2aPJ07 30 42.80+48 12 00.00M4G8 1917.0933462001 Jan 07-0.62-3.9
GJ 251PJ06 54 48.96 +33 16 05.44 M4 M4 1918.042864 2001 Jan 08 22.942 23.36 ¯ Chubak et al. (2012)
GJ 669bPJ17 19 52.98+26 30 02.64M4.5M51707.0059182000 Jun 11-34.90-34.59-36.8Simon, Bender, & Prato (2006)
GJ 406PJ10 56 28.87+07 00 52.77M6M61915.1242782001 Jan 0519.32116.73-Chubak et al. (2012)
LHS 292PJ10 48 12.58-11 20 08.23M6.5M6.5 1915.0873072001 Jan 05-0.21.86-0.61Reiners & Basri (2009)
LHS 2351PJ11 06 18.97 +04 28 32.71 M7 M7 1942.998278 2001 Feb 02 0.72 0.47 -2.1 Simon, Bender, & Prato (2006)
GJ 644cPJ16 55 35.29-08 23 40.11M7M71943.1786632001 Feb 0215.3914.5312.45Morin et al. (2010)
LHS 2065PJ08 53 36.20-03 29 32.11M9M9 1942.9575872001 Feb 026.45.75-8.4Reiners & Basri (2009)
BRI 0021-0214PJ00 24 24.64-01 58 20.14M9.5M9.5 2889.9529402003 Sep 0710.49.0610.4Reiners & Basri (2009)
2M 2206-20PJ22 06 58.31-20 21 30.0L1L12805.1142502003 Jun 14-11.08-
2M 0208+25PJ02 08 55.00+25 00 48.8L1 L12623.8743692002 Dec 1520.7921.24 -Simon, Bender, & Prato (2006)
2M 1506+13PJ15 06 54.41+13 21 06.08L3L33424.0114512005 Feb 22-0.68-0.30-0.68Blake et al. (2010)
2M 0036+18PJ00 36 16.18+18 21 10.47L3.5L3.5 2449.0823982002 Jun 2319.0222.0019.02Blake et al. (2010)