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ABSTRACT

The observed properties of transiting exoplanets are an exceptionally rich source of information that allows us to
understand and characterize their physical properties. Unfortunately, only a relatively small fraction of the known
exoplanets discovered using the radial velocity technique are known to transit their host due to the stringent orbital
geometry requirements. For each target, the transit probability and predicted transit time can be calculated to great
accuracy with refinement of the orbital parameters. However, the transit probability of short period and eccentric
orbits can have a reasonable time dependence due to the effects of apsidal and nodal precession, thus altering their
transit potential and predicted transit time. Here we investigate the magnitude of these precession effects on transit
probabilities and apply this to the known radial velocity exoplanets. We assess the refinement of orbital parameters
as a path to measuring these precessions and cyclic transit probabilities.
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1. INTRODUCTION

The realization that we have crossed a technology threshold
that allows transiting planets to be detected sparked a flurry
of activity in this direction after the historic detection of
HD 209458 b’s transits (Charbonneau et al. 2000; Henry
et al. 2000). This has resulted in an enormous expansion
of exoplanetary science such that we can now explore the
mass–radius relationship (Burrows et al. 2007; Fortney et al.
2007; Seager et al. 2007) and atmospheres (Agol et al. 2010;
Deming et al. 2007; Knutson et al. 2009a, 2009b) of planets
outside of our solar system. Most of the known transiting planets
were discovered using the transit method, but some were later
found to transit after first being detected using the radial velocity
technique. Two notable examples are HD 17156 b (Barbieri et al.
2007) and HD 80606 b (Laughlin et al. 2009), both of which are
in particularly eccentric orbits. Other radial velocity planets are
being followed up at predicted transit times (Kane et al. 2009)
by the Transit Ephemeris Refinement and Monitoring Survey
(TERMS).

Planets in eccentric orbits are particularly interesting because
of their enhanced transit probabilities (Kane & von Braun 2008,
2009). This orbital eccentricity also makes those planets prone
to orbital precession. In celestial mechanics, there are several
kinds of precession which can affect the orbital properties,
spin rotation, and equatorial plane of a planet. These have
been studied in detail in reference to known transiting planets,
particularly in the context of the precession effects on transit
times and duration (Carter & Winn 2010; Damiani & Lanza
2011; Heyl & Gladman 2007; Jordán & Bakos 2008; Miralda-
Escudé 2002; Pál & Kocsis 2008; Ragozzine & Wolf 2009).
One consequence of these precession effects is that a planet that
exhibits visible transits now may not do so at a different epoch
and vice versa.

Here we present a study of some precession effects on known
exoplanets. The aspect which sets this apart from previous
studies is that we are primarily interested in planets not currently
known to transit, particularly long-period eccentric planets
which have enhanced transit probabilities and larger precession

effects. We investigate the subsequent rate of change of the
transit probability to show how they drift in and out of a
transiting orientation. We calculate the timescales and rates of
change for the precession and subsequent transit probabilities
and discuss implications for the timescales on which radial
velocity planets will enter into a transiting configuration, based
upon assumptions regarding their orbital inclinations. We finally
compare periastron argument uncertainties to the expected
precession timescales and suggest orbital refinement as a means
to measure this effect.

2. TRANSIT PROBABILITY

Here we briefly describe the fundamentals of the geometric
transit probability for both circular and eccentric orbits. For a
detailed description we refer the reader to Kane & von Braun
(2008).

In the case of a circular orbit, the geometric transit probability
is defined as follows:

Pt = Rp + R!

a
, (1)

where a is the semi-major axis and Rp and R! are the radii of
the planet and host star, respectively. More generally, both the
transit and eclipse probabilities are inversely proportional to the
star–planet separation where the planet passes the star-observer
plane that is perpendicular to the plane of the planetary orbit.
The star–planet separation as a function of orbital eccentricity
e is given by

r = a(1 − e2)
1 + e cos f

, (2)

where f is the true anomaly, which describes the location of the
planet in its orbit, and so is a time-dependent variable as the
planet orbits the star. For a transit event to occur the condition
of ω + f = π/2 must be fulfilled (Kane 2007), where ω is the
argument of periastron, and so we evaluate the above equations
with this condition in place. The geometric transit probability
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Figure 1. Transit probability for a sample of the known exoplanets as a
function of orbital period. In cases where a change in ω from current to 90◦

results in a transit probability improvement >1%, a vertical arrow indicates the
improvement.

may thus be re-expressed as

Pt = (Rp + R!)(1 + e cos(π/2 − ω))
a(1 − e2)

, (3)

which is valid for any orbital eccentricity. Note that these
equations are independent of the true inclination of the planet’s
orbital plane.

Given the sensitivity of transit probability to the argument
of periastron, it is useful to assess how the probabilities for
the known exoplanets would alter if their orientation was that
most favorable for transit detection: ω = 90◦. We extracted data
from the Exoplanet Data Explorer3 (Wright et al. 2011) which
include the orbital parameters and host star properties for 592
planets and are current as of 2012 June 30. For each planet, we
calculate transit probabilities for two cases: (1) using the current
value of ω, and (2) using ω = 90◦. The transit probabilities for
case (1) are shown in Figure 1. Those planets whose case (2)
probabilities are improved by >1% are indicated by a vertical
arrow to the improved probability. There are several features
of note in this figure. The relatively high transit probabilities
between 100 and 1000 days are due to giant host stars whose
large radii dominates the probabilities (see Equation (3)). There
are several cases of substantially improved transit probability,
most particularly HD 80606 b, which is labeled in the figure. The
following sections investigate the periastron precession required
to produce such an increase in transit probability.

3. AMPLITUDE OF PERIASTRON
(APSIDAL) PRECESSION

Periastron (or apsidal) precession is the gradual rotation of
the major axis which joins the orbital apsides within the or-
bital plane. The result of this precession is that the argument
of periastron becomes a time-dependent quantity. There are a
variety of factors which can lead to periastron precession, such
as general relativity (GR), stellar quadrupole moments, mu-
tual star–planet tidal deformations, and perturbations from other
planets (Jordán & Bakos 2008). For Mercury, the perihelion pre-
cession rate due to general relativistic effects is 43′′ century−1

3 http://exoplanets.org/

Figure 2. Calculated GR periastron precession rates plotted as a function of
eccentricity for the known exoplanets with Keplerian orbital solutions. The
radius of the points is logarithmically proportional to the orbital period of the
planet. The symbol for Mercury is used to indicate its position on the plot.

(0.◦0119 century−1). By comparison, the precession due to per-
turbations from the other solar system planets is 532′′ century−1

(0.◦148 century−1) while the oblateness of the Sun (quadrupole
moment) causes a negligible contribution of 0.′′025 century−1

(0.◦000007 century−1; Clemence 1947; Iorio 2005).
Here we adopt the formalism of Jordán & Bakos (2008) in

evaluating the amplitude of the periastron precession. We first
define the orbital angular frequency as

n ≡
√

GM!

a3
= 2π

P
, (4)

where G is the gravitational constant, M! is the mass of the host
star, and P is the orbital period of the planet. The total periastron
precession is the sum of the individual effects as follows:

ω̇total = ω̇GR + ω̇quad + ω̇tide + ω̇pert, (5)

where the precession components consist of the precession
due to GR, stellar quadrupole moment, tidal deformations, and
planetary perturbations, respectively. Jordán & Bakos (2008)
conveniently express these components in units of degrees
per century. The components of ω̇quad and ω̇tide have a−2 and
a−5 dependencies, respectively. Since we are mostly concerned
with long-period planets in single-planet systems, we consider
here only the precession due to GR since this is the dominant
component in such cases. This imposes a lower limit on the total
precession of the system, particularly for multi-planet systems.
This precession is given by the following equation:

ω̇GR = 7.78
(1 − e2)

(
M!

M&

) (
a

0.05/AU

)−1 (
P

day

)−1

, (6)

with units in degrees per century.
To examine this precession effect for the known exoplanets,

we use the data extracted from the Exoplanet Data Explorer,
described in Section 2. The GR precession rates for these planets
are shown in Figure 2 as a function of eccentricity, where the
radius of the point for each planet is logarithmically scaled with
the orbital period. As a solar system example, the precession
rate for Mercury is shown using the appropriate symbol. There
are two distinct populations apparent in Figure 2 for which the
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Figure 3. Lines of constant GR periastron precession as a function of orbital
period and eccentricity, assuming a solar-mass host star. The eccentricity of the
orbit only plays a significant role at very large values (e > 0.8). The symbol for
Mercury is used to indicate its position on the plot.

divide occurs at a periastron precession of ∼0.◦1 century−1. It is
no coincidence that this divide corresponds to the known relative
dearth of planets in the semi-major axis range of 0.1–0.6 AU
(Burkert & Ida 2007; Cumming et al. 2008; Currie 2009).

As expected from Equation (6), the amplitude of the preces-
sion is dominated by the orbital period rather than the orbital
eccentricity. Thus, even planets in eccentric orbits do not ex-
hibit significant GR precession at longer periods. This is further
demonstrated in Figure 3 where we show lines of constant pre-
cession as a function of orbital period and eccentricity for a
solar-mass host star. This shows that the GR periastron pre-
cession is almost independent of orbital eccentricity except at
extreme values of e > 0.8. Once again, the location of Mercury
on the plot is indicated using the appropriate symbol.

As noted by Miralda-Escudé (2002) and Jordán & Bakos
(2008), the total precession timescales are large. Thus, what
really matters is the rate of change of the periastron argument and
quantifying when it is worth returning to a particular target for
re-investigation. This is the context of our analysis in Section 4.

3.1. Nodal (Orbital Plane) Precession

For completeness, we briefly consider the effects of nodal
precession. Nodal precession occurs when the orbital plane

precesses around the total angular momentum vector, which
is usually aligned with the rotation axis of the host star. The
precession is caused by the oblateness of the star which results in
a non-zero gravitational quadrupole field. This has the potential
to be the dominant source of precession when the orbit is polar.
For example, the nodal precession for the near-polar retrograde
orbit of WASP-33 b has been calculated by Iorio (2011) to be
9 × 109 times larger than that induced on the orbit of Mercury
by the oblateness of the Sun.

A description of nodal precession and its effect on transit
durations has been provided by Miralda-Escudé (2002). The
frequency of nodal precession can be expressed as

Ω = n
R2

!

a2

3J2

4
sin 2i, (7)

where n is the orbital angular frequency described in
Equation (4), J2 is the quadrupole moment, and i is the orbital
inclination relative to the stellar equatorial plane. A typi-
cal quadrupole moment for the star may be approximated as
J2 ∼ 10−6 and one may expect a relatively aligned orbit such
that sin 2i ∼ 0.1. For a typical hot Jupiter, values for a are 10 R!,
whereas for Mercury a = 83 R!. Since the nodal precession is
in units of the orbital angular frequency, one can see that the
resulting precession rate is typically several orders of magnitude
smaller than that of a hot Jupiter, even at the orbital distance of
Mercury. This effect is generally only considered for circular
orbits, most notably for short-period orbits that are the most fre-
quently encountered nature of known transiting planets. Here,
we are considering longer period eccentric orbits where this is
a much smaller effect on the orbital dynamics of the planet.

4. CYCLIC TRANSIT EFFECTS

As discussed in Section 2, the transit probability for a given
planet is a function of the periastron argument for orbits with
non-zero eccentricity (Kane & von Braun 2008). The precession
of the periastron argument thus leads to a cyclic change in the
transit probability. Here we quantify this cyclic behavior and
determine rates of change and total timescales.

Using the periastron precession rates calculated in Section 3
and combining these with the transit probability equations of
Section 2 allows us to compute the time-dependent transit
probability for each planet. Recall also that this cyclic behavior
will only occur for planets which have non-zero eccentricities.
Shown in Figure 4 are three examples of this time dependence

Figure 4. Cyclic transit probabilities resulting from GR periastron precession for three known exoplanets: HD 88133 b, HD 108147 b, and HD 190360 c. This is
shown from the present epoch and projected 100,000 years from now.
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Table 1
Exoplanet Periastron Precession, Transit Probabilities, and Timescales

Planet P e ω ω̇GR Pt P ′
t

a ∆tb dPt /dtc

(days) (deg century−1) (%) (%) (cent) (% century−1)

HD 88133 b 3.42 0.13 349.0 2.9490 14.6 17.0 34.2 0.101368
HD 76700 b 3.97 0.09 30.0 2.1838 12.9 13.5 27.5 0.038099
HD 73256 b 2.55 0.03 337.3 4.3194 16.1 16.8 26.1 0.033421
HD 108147 b 10.90 0.53 308.0 0.5732 5.1 13.4 247.7 0.028841
HD 102956 b 6.49 0.05 12.0 1.2451 22.8 23.6 62.6 0.022932
BD −08 2823 b 5.60 0.15 30.0 0.9420 11.6 12.4 63.7 0.022925
HD 7924 b 5.40 0.17 25.0 1.0901 7.2 7.9 59.6 0.019663
HD 68988 b 6.28 0.12 31.4 1.0214 8.7 9.1 57.4 0.015372
HD 1461 b 5.77 0.14 58.0 1.1102 9.4 9.6 28.8 0.011871
HD 217107 b 7.13 0.13 24.4 0.8192 6.9 7.4 80.1 0.010737
HD 168746 b 6.40 0.11 17.0 0.8587 7.2 7.7 85.0 0.010620
HD 149143 b 4.07 0.02 0.0 2.1614 15.5 15.8 41.6 0.009380
HD 162020 b 8.43 0.28 28.4 0.5283 4.7 5.3 116.6 0.009352
HD 187123 b 3.10 0.01 24.5 3.0953 13.5 13.6 21.1 0.006702
HD 47186 b 4.08 0.04 59.0 1.8945 11.0 11.0 16.4 0.006690
BD -10 3166 b 3.49 0.02 334.0 2.3445 8.7 8.9 49.5 0.006174
HD 69830 b 8.67 0.10 340.0 0.4923 5.4 6.1 223.5 0.004500
HD 190360 c 17.11 0.24 5.2 0.1833 4.3 5.2 462.8 0.003171
upsilon And b 4.62 0.01 51.0 1.8588 12.0 12.0 21.0 0.003147
HD 179079 b 14.48 0.12 357.0 0.2481 5.3 6.0 374.8 0.002675
51 Peg b 4.23 0.01 58.0 1.8602 10.1 10.1 17.2 0.002169
HD 10180 c 5.76 0.08 279.0 1.1232 7.6 8.8 152.2 0.002059
HIP 57274 b 8.14 0.19 81.0 0.5075 5.3 5.3 17.7 0.001124
HD 147018 b 44.24 0.47 336.0 0.0437 2.3 4.1 2607.5 0.000922
HD 16417 b 17.24 0.20 77.0 0.1935 6.3 6.4 67.2 0.000801
HD 10180 d 16.36 0.14 292.0 0.2001 3.6 4.7 789.4 0.000780
HD 163607 b 75.29 0.73 78.7 0.0336 8.3 8.4 336.7 0.000406
HD 224693 b 26.73 0.05 6.0 0.1008 3.2 3.4 833.1 0.000283
4 UMa b 269.30 0.43 23.8 0.0025 17.8 21.7 26488.3 0.000263
61 Vir c 38.02 0.14 341.0 0.0453 2.1 2.5 2405.3 0.000227
HD 102117 b 20.81 0.12 279.0 0.1351 3.3 4.2 1266.0 0.000169
HD 43691 b 36.96 0.14 290.0 0.0612 2.6 3.4 2612.5 0.000152
70 Vir b 116.69 0.40 358.7 0.0090 1.9 2.7 10097.0 0.000124
HD 156846 b 359.51 0.85 52.2 0.0049 4.4 4.8 7699.5 0.000116
HD 16141 b 75.52 0.25 42.0 0.0163 2.3 2.5 2950.5 0.000105
GJ 785 b 74.39 0.30 15.0 0.0141 1.4 1.6 5332.1 0.000089
HIP 57274 c 32.03 0.05 356.2 0.0500 1.9 2.0 1876.0 0.000083
HD 4113 b 526.62 0.90 317.7 0.0031 0.9 4.3 42500.7 0.000082
rho CrB b 39.84 0.06 303.0 0.0419 2.3 2.6 3510.1 0.000055
HD 45652 b 43.60 0.38 273.0 0.0380 1.7 3.8 4660.2 0.000036
HD 20868 b 380.85 0.75 356.2 0.0019 1.3 2.4 48796.3 0.000035
61 Vir d 123.01 0.35 314.0 0.0072 0.8 1.5 19010.2 0.000034
55 Cnc c 44.38 0.05 57.4 0.0335 2.1 2.1 972.3 0.000033
HD 60532 b 201.30 0.28 351.9 0.0040 1.6 2.1 24667.9 0.000032
HD 145457 b 176.30 0.11 300.0 0.0056 5.3 6.5 26940.2 0.000032
GJ 581 d 66.64 0.25 356.0 0.0089 0.7 0.9 10602.7 0.000029
HD 5891 b 177.11 0.07 351.0 0.0049 4.8 5.2 20191.3 0.000027
HD 1237 b 133.71 0.51 290.7 0.0072 0.6 1.8 22236.9 0.000027
HD 17092 b 359.90 0.17 347.4 0.0020 2.8 3.4 52495.0 0.000016
HD 22781 b 528.07 0.82 315.9 0.0014 0.4 1.8 93315.9 0.000015
HD 107148 b 48.06 0.05 75.0 0.0342 2.1 2.1 439.0 0.000015
BD +48 738 b 392.60 0.20 358.9 0.0008 5.5 6.7 113252.5 0.000015
HD 180314 b 396.03 0.26 303.1 0.0019 2.3 3.8 78180.5 0.000014
HIP 14810 c 147.77 0.15 327.3 0.0049 1.1 1.4 25078.6 0.000013
HD 8574 b 227.00 0.30 26.6 0.0028 1.1 1.3 22763.8 0.000013
HD 216770 b 118.45 0.37 281.0 0.0075 0.8 1.8 22495.8 0.000012
HD 93083 b 143.58 0.14 333.5 0.0041 1.1 1.3 28700.1 0.000010
HD 11977 b 711.00 0.40 351.5 0.0006 2.2 3.3 153321.8 0.000010
HD 222582 b 572.38 0.73 319.0 0.0010 0.5 1.5 126637.2 0.000009
HD 231701 b 141.60 0.10 46.0 0.0057 1.2 1.2 7727.6 0.000008

Notes.
a P ′

t refers to the transit probability where ω = 90◦.
b ∆t refers to the time until P ′

t occurs.
c dPt /dt is calculated over the coming century but is a time-dependent quantity.
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over a period of 100,000 years. When viewing such a plot one
is tempted to interpret the cyclic variability in terms of the
orbital period, however this variation is caused by the periastron
precession, not by the orbital period. There is, of course, some
period dependency involved, in that shorter period orbits will
tend to have a higher cyclic frequency. The planets shown
here (HD 88133 b, HD 108147 b, and HD 190360 c) have
orbital periods of 3.4, 10.9, and 17.1 days, respectively (Butler
et al. 2006; Wright et al. 2009). HD 108147 b, in particular,
displays very large amplitude variations due to the relatively
high eccentricity of its orbit (e = 0.53). HD 190360 c has a
smaller eccentricity and periastron precession rate, which leads
to a cyclic timescale much greater than 100,000 years.

We have performed these calculations for a subset of the
known exoplanets using the data extracted from the Exoplanet
Data Explorer, described in Section 2. We restrict our sample
to those planets which are not known to transit and have non-
zero eccentricities. The results of these calculations are shown
in Table 1 for 60 of the planets. The calculated values include
the periastron precession rate (ω̇GR), transit probability (Pt),
maximum transit probability at ω = 90◦ (P ′

t ), time from the
current epoch until maximum transit probability (∆t), and the
transit probability rate of change (dPt/dt). The table has been
sorted according to dPt/dt which is presented in units of
% century−1. The dPt/dt values have been calculated from
the current epoch over the coming century and thus represent
the present rate of change. The importance of this is that dPt/dt
is not constant and indeed can have negative values as the
periastron argument rotates past ω = 90◦. Specifically, dPt/dt
will be negative for 90◦ < ω < 270◦ and positive elsewhere.
This further restricts the planets considered to those whose
current ω falls in this range such that dPt/dt > 0.

It can be clearly seen that the time required to reach maximum
transit probability is immense, certainly beyond the lifetime of
anyone reading this work. However, the rate of change can
yield an improved idea of which planets may have a measurable
change in configuration. Consider the case of HD 156846 b,
whose orbital parameters and transit potential have been studied
in detail by Kane et al. (2011). This is one of the planets in the
table with the longest period and also has one of the highest
orbital eccentricities. The transit probability is relatively high
for this planet and is close to the maximum probability since
ω only needs to change by 38◦. Even so, observations of the
periastron precession are unlikely for the timescales involved.
By contrast, the hot Saturn HD 88133 b discovered by Fischer
et al. (2005) has the highest transit probability rate of change.

5. CONCLUSIONS

Transiting planets have become an essential component of
exoplanetary science due to the exceptional opportunities they
present for characterization of these planets. Many of the known
exoplanets discovered through the radial velocity technique are
currently not known to transit. However, transit probabilities can
be substantially improved if the periastron argument approaches
ω = 90◦. Since, for eccentric orbits, the periastron argument is
time dependent as a result of their precession, planets which do
not transit at the present epoch may transit in the future and
vice versa. The planet Mercury falls quite central to the current
distribution of calculated periastron precessions for the known
exoplanets. This distribution has an eccentricity dependence but
is most strongly affected by the orbital period. If a precession
rate for a given planet is found to be markedly different from
our calculations then this could be indicative of further as yet

undiscovered planets in that system. These additional planets
would normally be detected from the radial velocity data unless
insufficient observations allow them to remain hidden.

The periastron precession leads to a cyclic transit probabil-
ity variation for all exoplanets with non-zero eccentricities.
Timescales vary enormously but will likely lead to many of
these planets transiting their host stars at some point in the fu-
ture. A reasonable question to ask at this point is if the periastron
arguments of the known planets are known with sufficient pre-
cision to detect precession in any acceptable time frame. Once
again, we exploit the data extracted from the Exoplanet Data
Explorer, described in Section 2. The uncertainties associated
with the values of ω for all these planets have a mean of 28◦

and a median of 15◦. This is much higher than the precession
effects shown in Table 1. A program of refining the orbits of
the known exoplanets, such as that described by Kane et al.
(2009), would result in many of these precession effects being
detectable in reasonable time frames. For example, the first
planet in the table, HD 88133 b, has a precession rate that will
cause a shift of ∼0.◦3 per decade. Uncertainties on ω of less than
1◦are not unusual and can certainly be achieved for those plan-
ets in particularly eccentric orbits. The exoplanet HD 156846 b
has a current ω uncertainty of 0.◦16 (Kane et al. 2011) which
demonstrates that such refinement is possible even for relatively
long-period planets. More data and longer time baselines will
produce subsequent improvements for many more planets which
can result in the detection of the precession for high-precession
cases.

The relevance of this work may be extended to the Kepler
mission which has detected many candidate multi-planet sys-
tems (Borucki et al. 2011a, 2011b; Batalha et al. 2012), most
of which are likely to be real exoplanets (Lissauer et al. 2012).
Due to simply geometric transit probabilities, most of these sys-
tems will certainly have planets which are not transiting the host
star at present. The known transiting multi-planet systems are
largely in circular orbits, but may have periastron precession
due to perturbations from other planets leading to an eventual
transit from currently non-transiting planets in the system. For
example, Kepler-19 c is known to exist from transit timing varia-
tions of the inner planet, but does not currently have a detectable
transit signature. Similarly, some of these planets will cease ex-
hibiting an observable transit signature. Issues such as these are
important for considering the completeness of these surveys in
determining multi-planetary system architectures.
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