XO-MASS: FUNDAMENTAL ASTROPHYSICAL PARAMETERS OF EXOPLANET HOSTING STARS

KASPAR VON BRAUN¹, GERARD T. VAN BELLE² & DAVID R. CIARDI¹ (¹NEXSCI/CALTECH, ²ESO)

ABSTRACT & INTRODUCTION: Formation, evolution, and radiation environment of extrasolar planets are sensitively dependent on the astrophysical properties of the respective parent star, including location and size of the habitable zone. The determination of these stellar astrophysical parameters is therefore critical to insights into exoplanet characterization. We use data obtained with the Palomar Testbed Interferometer (PTI) coupled with Hipparcos parallaxes to directly measure linear radii of about 15 nearby, bright exoplanet hosting stars. The knowledge of stellar radii allows for determination of effective temperatures by means of spectral energy distribution fitting. Finally, we use literature log g values, combined with our directly determined radii, to determine stellar masses.

Hipparcos

Host

Satellite. Trigonometric

parallax measurements

provide **DISTANCES** (D)

Image credit:

Exoplanet

The

to

Stars.

ESA

HD117176 Net SED Model

1. Linear Radii: Combination of **DISTANCES** AND ANGULAR RADII. $R_{linear} \sim D^* \theta$

The Palomar Testbed Interferometer in 2007. PTI operated mostly in *H* and *K* bands. Maximum baseline length = 110m. Interferometric observations provide ANGULAR **<u>DIAMETERS</u>** (O) of Exoplanet Host Stars. *Photo credit: G. T. van Belle.*

Spectral Energy Distribution Fitting. Literature photometry and Pickles (1998) spectral templates provide **BOLOMETRIC FLUX** (F_{BOL}) of Exoplanet Host Stars.

2. Effective Temperatures: Combination of **BOLOMETRIC FLUXES AND ANGULAR RADII.**

 $T_{eff} \sim \left(F_{bol} / \theta^2 \right)^{1/4}$

3. Stellar Masses: Combination of (LITERATURE) **SURFACE GRAVITIES** & LINEAR

RESULTS

HD	other name name name name number of known planets	PTI ang. diam	PTI ang. diam. . uncertainty	fract. err	parallax	parallax error	distance	e linear radius	linear radius error	spectral type (NStED, ref. 1, ref. 2)	Fbol	Fbol uncertainty	Teff	Teff uncerta inty	log g (ref. 3)	log g (ref. 4)	mass	mass error	CHARA ang diamete (ref. 2)	CHARA error r (ref. 2)
		[mas]	[mas]		[mas]	[mas]	[pc]	[Rsun]	[Rsun]		[10e-8 erg cm^-2 s^-1]	[10e-8 erg cm^-2 s^-1]	[K]	[K]			[Msun]	[Msun]	[mas]	[mas]
3651	gj 27 1	0.697	0.077	11%	90.03	0.72	11.11	0.83	0.09	KOV	13.84	0.23	5408	300	4.45		0.71	0.18	0.79	0.027

9826	ups and	3	1.054	0.056	5%	74.25	0.72	13.47	1.52	0.08	G0	60.68	0.91	6364	171	4.25	4.26	1.51	0.24		
13189		1	0.673	0.130	19%	0.54	0.93	1852	134	233	K2	6.85	0.27	4617	448						
19994	gj 128 a	1	0.799	0.135	17%	44.69	0.75	22.38	1.91	0.32	G0V (F8V)	26.61	0.95	5948	505	4.24	4.07	1.91	0.75	0.788 0.0)26
22049	eps eri	1	1.958	0.043	2%	310.75	0.85	3.22	0.67	0.01	K2V	108.00	1.06	5393	61	4.57		0.47	0.06		
28305	eps tau	1	2.460	0.047	2%	21.04	0.82	47.53	12.52	0.25	KOIII	127.10	2.03	5012	52		2.47	1.61	0.20		
38529		2	0.801	0.069	9%	23.57	0.92	42.43	3.64	0.31	G8III-IV	13.92	0.49	5052	222	4.05	3.68	3.54	1.62		
75732	55 Cnc	5	0.756	0.072	9%	79.8	0.84	12.53	1.01	0.10	K0IV-V (G8V)	13.32	0.26	5144	246	4.45	4.48	1.09	0.21	0.854 0.0)24
95128	47 Uma	3	0.842	0.066	8%	71.04	0.66	14.08	1.27	0.10	G0	28.33	0.92	5886	236	4.38		1.41	0.27		
117176	70 Vir	1	0.993	0.058	6%	55.22	0.73	18.11	1.93	0.20	G0	31.64	0.62	5572	165	4.07	4.04	1.53	0.32		
120136	tau Boo	1	0.865	0.065	7%	64.12	0.7	15.60	1.44	0.11	F5	49.49	1.33	6676	255	4.26	4.25	1.37	0.21		
142091	kap CrB	1	1.469	0.046	3%	32.13	0.61	31.12	4.89	0.17	KOIII-IV	43.68	1.01	4965	83		3.02	0.91	0.12		
143761	rho CrB	1	0.684	0.078	11%	57.38	0.71	17.43	1.28	0.15	G0V	20.05	0.41	5990	343	4.36	4.2	1.13	0.33	0.686 0.0)44
167042		1	0.748	0.083	11%	20	0.51	50.00	4.00	0.45	КО	14.00	0.60	5236	296		3.17	0.86	0.22		
188310	Xi Aql	1	1.616	0.045	3%	15.96	1.01	62.66	10.84	0.30	КО	48.63	1.44	4863	77		2.49	1.32	0.17		
190360	GJ 777a	2	0.723	0.074	10%	62.92	0.62	15.89	1.23	0.13	G7 IV-V	16.38	0.37	5539	285	4.38	4.35	1.28	0.27		
199665	18 Del	1	0.959	0.060	6%	13.68	0.7	73.10	7.50	0.47	KO (G6III)	20.51	1.04	5087	172		2.88	1.56	0.26	1.111 0.0)28
210702		1	0.773	0.071	9%	17.88	0.74	55.93	4.63	0.43	KO (K1III)	14.27	0.43	5175	241		3.12	1.03	0.23	0.875 0.0)18
217014	51 Peg	1	0.689	0.078	11%	65.1	0.76	15.36	1.13	0.13	G3V	17.94	0.18	5804	329	4.45	4.32	1.14	0.31	0.748 0.0)27
221345	14 And	1	1.406	0.047	3%	13.09	0.71	76.39	11.50	0.39	K0 (G8III)	33.68	1.33	4756	92		2.59	1.88	0.25	1.336 0.0	09

Table Notes:

- Principal Results are in **BLUE FONT**.
- References in Table: (1) van Belle & von Braun 2009, (2) Baines et al. 2008, (3) Valenti & Fischer (2005), (4) Allende-Prieto & Lambert (1999).

REFERENCES:

Allende-Prieto, C. & Lambert, D. L. 1999, A&A, 352, 555 Baines, E. K., et al. 2008, ApJ, 680, 728 Pickles, A. J. 1998, PASP, 110, 863 Valenti, J. A. & Fischer, D. A. 2005, ApJS, 159, 141

Parallax values from Hipparcos. 3.

Spectral types from NStED (http://nsted.ipac.caltech.edu) or van Belle & von Braun (2009); spectral types in parentheses 4. from Baines et al (2008).

log g values are averaged wherever available; uncertainty = half the difference (or = 0 if only one value present). 5.

6. Last two columns are for comparison purposes; taken from Baines et al. (2008).

van Belle, G. T. & von Braun, K. 2009, ApJ, 694, 1085

