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ABSTRACT. This investigation examines the propagation of errors through the uniform disk visibility function.
The implications of those errors on measurements of absolute visibility through optical and near-infrared
interferometers are considered within the context of using calibration stars to establish system visibilities for
these instruments. We suggest a simple ratio test to establish empirically whether or not the measured visibilities
produced by such an instrument are relative (errors dominated by calibrator angular size prediction error) or
absolute (errors dominated by measurement error).

Online material: color figures

1. INTRODUCTION

Visible and near-infrared interferometers are powerful tools
for measuring the minute angular sizes of nearby stars. How-
ever, establishing absolute system responses in the presence of
atmospheric turbulence and instrument imperfections is a chal-
lenging proposition that requires careful attention to detail when
constructing an observational approach.

For two-element interferometers that are now commonly in
use, the principal measured quantity is the visibilityV, which
is simply a characterization of the contrast found in the ob-
served interference fringe, and can range from 0 to 1. In prac-
tice, interferometers that lock onto and track fringes through
temporally modulating servo loops tend to measure rather2V
than justV. A detailed discussion of fringe-visibility estimators
can be found in Colavita (1999).

For individual stars, the observed will decrease from unity2V
as the source becomes resolved to the instrument, and also as
the response of the instrument and atmosphere through which
it observes departs from an idealized system. A common ap-
proach to account for the system response (a combination of
the atmospheric and instrumental responses) is to interleave
observations of calibration stars with observations of the star
of interest. If the system visibility is established with cal-2Vsys

ibration sources, a target star’s absolute is then easily de-2V
rived from the measured :2V

2V (target)meas2V (target)p . (1)norm 2Vsys

Calibration sources are stars for which we have some sort of
a priori knowledge of their angular size, and as a result, their
expected values for can be predicted ( ). Thus, from the2 2V Vpred

calibrator’s measured values ( ), the system visibility2 2V Vmeas

that characterizes the atmospheric and instrumental per-2Vsys

formance degradations is simply

2V (calibrator)meas2V p . (2)sys 2V (calibrator)pred

It is important to note that, as is apparent from the practice of
using the system visibility found in equations (1) and (2), the
system visibility needs to be constant when observing both the
target star and the calibration star. This consideration is sig-
nificant when such objects are of differing brightness, are lo-
cated in different portions of the sky, are subject to varying
weather conditions, or are widely separated in time. Because
no two stars will be of exactly the same brightness, the in-
strument will be required to have some measure of dynamic
range in this regard; for the purposes of this investigation, we
assume all of the relevant data are properly collected within
the range of constant system visibility.

For some of the sources considered for use as calibrators,
angular sizes have actually been measured. However, for most
of the sources considered as calibrators, some sort of indirect
estimation technique needs to be employed. These techniques
include angular size estimation from distance and linear size
(with the second quantity often being inferred from some proxy,
such as spectral type), blackbody fitting, and prox-R � I V � K
ies (Mozurkewich et al. 1991; di Benedetto 1993; van Belle
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1999), and spectrophotometric fits (Blackwell & Lynas-Gray
1994; Cohen et al. 1996).

For unbiased results, it is preferable to utilize calibration
sources that are “unresolved” to the interferometer. A source
is considered to be unresolved when the errors in are dom-2Vsys

inated by the measurement error and not the prediction error
[ ]. For such a calibrator, biases in the angular(j ) 1 (j )2 2V meas V pred

size estimation technique—known or unknown—are masked
by the measurement process. This is due the interferometer’s
insensitivity to the unresolved calibrator’s angular size, and as
such, this technique is insensitive to estimation technique bi-
ases. In the limit that the instrument performance is linear
between target and calibration sources, the resulting calibration
is thus considered to be anabsolute calibration of the system
visibility . This approach is documented in the literature for2Vsys

many interferometers, including the Mark III (Mozurkewich et
al. 1991), the Infrared Michelson Array (IRMA; Dyck et al.
1993), the Infrared Optical Telescope Array (IOTA; Dyck et
al. 1996), and the Palomar Testbed Interferometer (PTI; van
Belle et al. 1999). In addition, as we see in § 3, this approach
avoids the regime in which the separate Taylor series bias due
to nonlinearity in the error propagation technique becomes sig-
nificant as well.

Another approach seen with some regularity is the estab-
lishment of system through use of resolved calibrators. In2Vsys

the case where instrumental limitations (typically limited sen-
sitivity) preclude the use of an unresolved calibrator, investi-
gators have utilized calibration sources that are resolved to
establish instrument system visibilities. The strength of this
approach is that resolved calibrators are typically associated
with stars of greater brightness, and as a result, a greater signal-
to-noise ratio (S/N) is achieved in observing the calibration
sources.

The weakness of this approach is that it establishes only a
relative calibration for the measurement, and any biases in-
herent in the original size estimation of the calibration source
propagate into the final visibility measured for the target source,
albeit with additional uncertainty due to measurement error in

. Relative measurements, when properly used, are useful2 2V Vmeas

quantities for certain investigations—for example, in the ex-
amination of the shape of a rotationally distorted star (Domi-
ciano de Souza et al. 2003)—but are inappropriate to use as
absolute values to establish quantities such as stellar linear size
or effective temperature.

2. THE VISIBILITY FUNCTION AND ANGULAR
SIZE ESTIMATION BIAS

The projections of stellar disks on the sky are clearly not
true “uniform disks” (see Hajian et al. 1998 and references
therein), having varying brightness from the center to the edge
of their disks. However, for most stars, characterization of them
as uniform disks is a reasonable approximation, and one that
lends itself to a mathematical examination in § 2.1.

A uniform disk as viewed by an interferometer exhibits a
visibility function w, given by

2 22J (x) 2J (pvB/l)1 12V(x) p w(x) p p , (3)[ ] [ ]x pvB/l

wherex is the spatial frequency and is a function of projected
baselineB, source angular sizev, and observational wavelength
l (Airy 1835; Born & Wolf 1980).

Since we will be utilizing calibration sources with predicted
angular sizesv, it is of great utility to examine the impact that
errors (and potentially size-estimation biases) have on our ex-
pected values for calibration source .2Vpred

2.1. Uniform Disk Visibility Error Propagation

Since , a routine propagation of errorsw p w(v, B, l)
through equation (3) gives

2 2 2�w �w �w2 2 2 2j p j � j � j � cov(v, B, l), (4)w v B l( ) ( ) ( )�v �B �l

for which the covariance terms for this discussion are expected
to be zero (we reexamine the higher order terms of eq. [4] in
§ 3). For the evaluation of equation (4), it is useful to employ
the function, which is defined in Bracewell (2000), andjinc(x)
its first derivative, given as

J (x) J (x)1 2′jinc (x) p and jinc (x) p � . (5)
x x

Using the chain rule on equations (3) and (4),

2�w � 2J (x)1p ( )[ ]�x �x x

� 2p 4 jinc (x)
�x

′p 8 jinc (x) jinc (x)

8J (x)J (x)1 2p � . (6)2x

Equation (4) can be rewritten as

2 2 2 28J (x)J (x) pB pv pBv1 22 2 2 2j p � j � j � � jw v B l[ ] ( ) ( ) ( )[ ]2 2x l l l

2 2 2 28J (x)J (x) j j j1 2 v B lp � � .[ ] ( ) ( ) ( )[ ]x v B l

(7)

In the limit that the calibrator size prediction fractional errors
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Fig. 1.—Visibility for uniform disk stars as viewed by the CHARA Array,2V
with a 330 m baseline and a bandpass. Also shown on the right verticalKs

axis with a gray dotted line is detected photon countN, assuming a G2 V
calibration source, a 0.001 ms integration time per sample, 1 m diameter
aperture, and 4% throughput. [See the electronic edition of PASP for a color
version of this figure.]

Fig. 2.—Calibrator prediction error propagated from an assumed2V (j )2V pred

5% uncertainty in calibrator angular size,not accounting for measurement
error. [See the electronic edition of PASP for a color version of this figure.]

dominate ( ), we havej /v k j /B,j /lv B l

8J (x)J (x) j1 2 v(j ) p j p . (8)2V pred w [ ] ( )x v

This error propagates in quadrature back to our estimate of the
system visibility in equation (2), along with any measurement
error .(j )2V meas

In considering , it is very important not only to(j )2V meas

establish the measurement scatter of a single sampling2V
event, but to empirically establish the night-to-night mea-
surement error found in measurements. An excellent ex-2V
ample of such a characterization is the examination of the
final residuals in the binary-star fit ofi Pegasi found in2V
Boden et al. (1999).

2.2. Absolute versus Relative Ratio Test

We can use equations (7) and (8) to explore the impact that
calibrator size prediction error has on the system visibilityjv

error . Our test case is as follows: a 330 m baseline(j )2V pred

with a cm error in its knowledge of projection on thej p 1B

sky (which will be the product of geometry knowledge errors
and timing errors, but is still a generous error bar for this term);
a mm error in the knowledge of the operationalj p 0.01l

wavelength ( mm); and a 5% prediction error inl p 2.15 jv

the angular size estimate for an individual calibrator. This test
case is fairly representative of the current parameters of interest
for the CHARA Array (ten Brummelaar et al. 2005).

For a range of angular sizes, the predicted value for the2V
calibrator is plotted in Figure 1. As the star passes 0.690 mas,

has already fallen below 50% and drops to zero beyond2V
1.500 mas. Also plotted in Figure 1 on the righthand axis is a
rough expectation of the number of detected photonsN for the
CHARA Array for a G2 V star, following the relationship
detailed in van Belle (1999) between and angular sizeV � K
(noting that the estimate of system throughput may be inac-
curate but only scales the results here). For our hypothetical
G2 V star, we have (Bessell & Brett 1988). TheV � K p 1.5
predicted error derived from those values for the three error2V
terms in equation (7) is shown in Figure 2. We can also estimate
our S/N as being proportional to in the read-noise–limited2 2N V
regime (the usual operational case for near-infrared interfero-
meters; Colavita 1999), although we note that a similar analysis
we have executed for gives results similar to those pre-2NV
sented in this section and the next. (This latter case corresponds
to photon-noise–limited operations [Mozurkewich et al. 1991]
in the low-photon limit, as might be the case for visible in-
terferometers.) A plot of this is shown in Figure 3, which is
effectively the product of the solid line and the dotted line
squared seen in Figure 1.

One way to illustrate this point is to examine the ratior of
measurement error to calibrator prediction error2 2V (j ) V2V meas

, as is seen in Figure 4:(j )2V pred

(j )2V measr p . (9)
(j )2V pred

The range of angular sizes at whichr dips below 1.0 indicates
where is a significant, if not the dominant, contribution(j )2V pred

to the measurement error. Equation (9) (with the denomi-2V
nator as provided by eq. [7] or [8]) is a straightforward indicator
of the interferometer operational regime as determined by the
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Fig. 3.—S/N ( ) for our G2 V source as a function of calibrator angular2 2N V
size. [See the electronic edition of PASP for a color version of this figure.]

Fig. 4.—From eq. (9), the ratio of an assumed 2% measurement error2V
to the error due to calibrator size prediction error of 5%, as a function of2V
expected calibrator size. Note the regime between the gray dotted lines
( mas), where the has a significant impact on the final0.45! v ! 1.35 (j )2V pred

errors. [See the electronic edition of PASP for a color version of this figure.]

Fig. 5.—Full calibrator merit function , propagated from an assumed2 2N V /j 2V

5% uncertainty in calibrator angular size, and including a putative 2%2V
measurement error. The regime to the left of the gray dotted line (in the case
of this example, mas) has measurement error as the dominant0 ! v ! 0.45
contribution to the merit function. [See the electronic edition of PASP for a
color version of this figure.]

choice of calibrator: for it is relative, and for it isr ! 1 r 1 1
absolute.

It is interesting to note that Figure 4 indicates a second
regime of absolute calibrator sizes for our example case; that
of the “superresolved” sources in the range of mas.v 1 1.35
Simply put, it is in this regime that the function has once2V
again flattened out (see Fig. 1), and uncertainty inv does little
to impact for the calibrator. Unfortunately, it is also in this2Vpred

range that the S/N rapidly drops to zero, as already seen in
Figure 3. In addition, as we see in § 3, this regime is problematic
due to bias in the error propagation technique.

2.3. A Merit Function and its Evaluation

As a useful metric of “calibrator goodness,” we propose a
merit function equal to the ratio of S/N to system visibility
error:

2 2N V
m p . (10)

j 2V

In the real-world case, measurement error also2V (j )2V meas

affects our measurements of the system visibility. The resulting
system visibility error is computed from the measurement error
and the calibrator prediction error, added in quadrature,2V

2 2 2j p (j ) � (j ) , (11)2 2 2V V meas V pred

and applied to our merit function. The merit function incor-
porating the measurement error and calibrator size prediction
error is plotted in Figure 5 for the case in which the mea-2V
surement errors are assumed to be at the 2% level.

Of interest in our CHARA Array example are the angular
sizes beyond∼0.450 mas, where the merit function changes
slope, peaks, and descends. It is at those angular sizes

( mas) that the contribution to the merit function tran-v 1 0.450
sitions from measurement error being dominant to2V (j )2V meas

calibrator prediction error becoming significant and2V (j )2V pred

then dominant. This regime is of particular interest: if the tech-
nique being employed for calibrator prediction is subject2V
to a systematic size-estimation bias due to an imperfection in
the predictive technique, that bias will begin to significantly
affect the inferred values for calibrators in excess of the2V
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Fig. 6.—Ratio of measured angular size to predicted angular size (as derived
from a blackbody approximation) as a function of effective temperature for
48 stars from van Belle et al. (1999). [See the electronic edition of PASP for
a color version of this figure.]

size, despite their apparent greater “merit” indicated by equa-
tion (10). For calibrators short of this point, any systematic
size-estimation biases in the size prediction (and resulting2V
prediction) will be masked by the calibrator’s pointlike nature
for the interferometer system.

2.4. Stellar Angular Size Prediction Bias Example:
The Blackbody Case

If we consider stars as blackbodies (as is frequently done),
we can fit broad- and narrowband photometry from these ob-
jects using a Planck function, which will result in predictions
for the object’s effective temperature, bolometric flux, and an-
gular size. However, such an approximation is quite poor and
overlooks many subtleties of stellar atmospheres, such as wave-
length-dependent opacities.

In order to quantify the specifics of this example, a sample
of 48 late giant stars from van Belle et al. (1999) that were well
characterized photometrically was examined with such an ap-
proximation. The benefit of this sample is that the sizes are
measured and presented in van Belle et al. (1999) and can be
compared to the results obtained with the blackbody fit. Figure
6 plots the ratio of measured angular size to blackbody-derived
angular size, as a function of the effective temperatures estab-
lished for those stars in the paper. Errors in the blackbody angular
size were derived from appropriate iteration of the Planck func-
tion within the errors specified for the photometry.

What is interesting to note in Figure 6 is the systematic offset
of the ratios below a line of unity—the blackbody technique
systematically delivers an angular size that is too large relative
to the sizes that have been measured. The errors in that ratio,
propagated from the blackbody and measured angular size er-
rors, indicate that the ratio of unity is within most of the dis-
played error bars, as one would expect, but the general trend
(on the order of∼15%–25%) shows that use of simple black-
body angular sizes could potentially bias interferometer
calibrators.

As an example, if we were to use these sorts of stars in
this manner with the PTI, we would find that forK-band
operations with its 110 m baseline, we would need stars in
the mas range for use as absolute calibrators, givenv ≤ 0.45–58
the PTI’s limiting measurement precision of (j ) p2V meas

(Boden et al. 1999) used in equations (8) and (9), with0.014
a requirement of . With this approach, our previousr 1 1
CHARA Array example with would require(j ) p 0.0202V meas

mas, which would demand distant calibration objectsv ≤ 0.20
beyond its sensitivity limits. Fortunately, techniques have been
developed with the apparent ability to predict stellar angular
sizes to better than 10%, such as spectral energy distribution
fitting (e.g., Blackwell & Lynas-Gray [1994] and Cohen et al.
[1999] agree with interferometric measurements at the∼few
percent level), allowing for the use of very long baseline in-
struments, such as the CHARA Array, in an absolute fashion.

Clearly, more sophisticated approaches to angular size es-

timation can be undertaken for interferometer calibrator stars,
presumably with less susceptibility to size-estimation bias, but
the blackbody example is illustrative of how it demonstrates
potential bias within an estimation technique. One of the most
useful aspects of an astronomical interferometer, however, is
its ability to mask bias in a calibrator size prediction technique
for a sufficiently unresolved calibration source, and in doing
so, deliver absolutely calibrated visibilities. Such an approach
is not merely useful, but is essential to calibrate and verify
predictive techniques of ever-increasing accuracy.

3. TAYLOR SERIES BIAS IN THE ERROR
PROPAGATION TECHNIQUE

The “routine propagation of errors” given in equation (4) is
based on just the first term of the Taylor series, which is subject
to inaccuracies as the equation becomes more nonlinear. This
particular approximation is increasingly inaccurate for nonlin-
ear equations. Expanding on our discussion of error propagation
in § 2.1 to probe the significance of the higher order terms,
we can expand equation (3) in a Taylor series about a given
spatial frequencym:

′w(xFm) p w(mFm) � (x � m)w (mFm)

2(x � m) ′′� w (mFm) � … . (12)
2!

The average of can be written asw(xFm)

2jx ′′w(xFm) p w(mFm) � w (mFm) � … , (13)
2!
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Fig. 7.—Percentage of Taylor series bias in a measurement, as discussed2V
in § 3, due to calibrator size prediction error of 5%, as a function of expected
calibrator size. [See the electronic edition of PASP for a color version of this
figure.]

since to first order, the term drops out ifx is′(x � m)w (mFm)
centered around the meanm. The usual error propagation pre-
sented in equation (4) assumes that the last term in equa-
tion (13) is also negligible, which represents the Taylor series
bias in the error propagation method:

2jx ′′bias p w(xFm) � w(mFm) p w (mFm). (14)T 2!

From equations (3), (5), and (8), we can write this as

2jx ′ 2 ′′{ }bias p 8[ jinc (m)] � 8 jinc (m) jinc (m) . (15)T 2!

Both jinc and are found in equation (5), and a derivation′jinc
of can be found in the Appendix.′′jinc

For most applications (including the examples given here),
is dominated by the uncertainty in predicted calibrator an-jx

gular size, . As such, our example of 5% error inv(j )v pred

means ; the percentage bias as a function ofj p 5%# xx

calibrator predicted visibility [ ] is plotted in2bias (m)/V(m)T

Figure 7 for our CHARA Array test case. The term inbiasT

this case starts to grow exponentially at mas; becausev � 1.25
of this, the “superresolved” calibrator regime indicated in Fig-
ure 4 and discussed in § 2.3 is undesirable for use as a source
of calibrators.

4. DISCUSSION

Predictive techniques are clearly imperfect—otherwise, why
would we bother with measuring stellar angular sizes through

measurements in the first place? As such, it is essential that2V
work be carried out in the regime that is unaffected by potential
bias in the calibrator angular size predictive technique, or bias
from nonlinearities in the visibility function.

Permutations on the sample CHARA Array case in § 2.2 are
worth considering. While a 5% angular size prediction error is
reasonable to expect for most calibration sources, for those
sources with the very best a priori spectrophotometric charac-
terization, a 2.5% prediction error may be possible. In this case,
a 0.5% error in the knowledge of operational wavelength
( mm for in eq. [7]) still only contributes to thej p 0.01 Kl s

prediction error value by a factor of approximately∼1.02;2V
prior angular size knowledge at the!1% level is necessary for
this error term to contribute at a level greater than∼1.10.

As the measurement precision increases [and de-(j )2V meas

creases], the unity crossing point seen in Figure 4 (where
one passes from the absolute measurement regime into the
relative measurement regime) decreases in value, ranging
from ∼0.62 mas in the case of 5% errors (typically associated
with nonspatially filtered systems) down to∼0.40 mas for 1.5%
errors (typical of systems with spatial filtering). This is rather
intuitive: as one’s interferometric instrumentation improves in

its ability to precisely measure visibilities, the degree to which
that instrumentation is sensitive to potential biases in calibrator
visibility prediction increases.

These values scale with spatial frequency, which will itself
scale linearly with wavelength and baseline length for individ-
ual facilities. A selection of currently operational facilities is
cited in Table 1, along with their relevant operational param-
eters of operational baseline, wavelength, and cited measure-
ment precision. From these values, the maximum calibrator
angular size for absolute angular size measurements is derived
using the process found in § 2.3, assuming a 5% angular size
estimation error.

5. CONCLUSION

Given the common use of optical and near-infrared inter-
ferometers to establish basic stellar parameters such as linear
radius and effective temperature, it is of paramount importance
to clearly understand the operational regime of one’s instrument
as defined not only by its intrinsic capabilities, but also by the
particulars of the observing technique. As shown in § 2, in the
case in which resolved calibrators are employed, the interfer-
ometric visibility measurements that are provided are relative,
and as such are subject to biases—known and unknown—in
the calibrator diameter estimation process employed.

The use of unresolved calibrators found in the regime as
defined by the ratio test of equation (9) isessential to making
absolute measurements. Additionally, as seen in § 3, the non-
linear nature of the visibility function makes the routine prop-
agation of errors incorrect for very low visibilities, and as such,
biases the measurements as well.2V
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TABLE 1
Maximum Calibrator Sizes

Facility

Maximum
Baseline

(m) Band

Cited 2V
Measurement

Error

Maximum
Calibrator Size

(mas) Notes Reference

CHARA . . . . . . 330 K 0.04 0.77 No spatial filtering van Belle et al. (2005)
330 K 0.02 0.45 Spatial filtering Under development

IOTA . . . . . . . . . 38 J 0.046 2.3 No spatial filtering Millan-Gabet et al. (2005)
NPOI . . . . . . . . . 37.5 V 0.02 1.0 No spatial filtering Tycner et al. (2004)
PTI . . . . . . . . . . . 110 K 0.014 1.1 Spatial filtering Boden et al. (1999)
VLTI . . . . . . . . . 187 K 0.004 0.31 Spatial filtering, photometric monitoring Kervella et al. (2003)

Note.—Maximum calibrator sizes for absolute calibration of measurements for a variety of current interferometric facilities, assuming 5%2V
calibrator size estimate errors.
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APPENDIX A

DERIVATION OF jinc�(x)

Starting with the two Bessel function identities

d m m[x J (x)] p x J (x) (A1)m m�1dx

and

mJ (x) p (�1) J (x), (A2)�m m

we can use the recurrence relation

2(n � 1)
J (z) p J (z) � J (z) (A3)n n�1 n�2z

as applied to ,J2

2
J (z) p J (z) � J (z), (A4)2 1 0z

and explicitly work out :′′jinc (x)

d′′ ′jinc (x) p jinc (x)
dx

d �J (x)2p [ ]dx x

d 1 2
p J (x) � J (x)0 1[ ]{ }dx x x

�1 2 1 2
p J (x) � J (x) � �J (x) � J (x) .0 1 1 2[ ]{ }2{ [ ]}x x x x

(A5)
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