

MoonLITE: The Lunar InTerferometry Explorer

The Extreme Instrument for Extreme Solar Systems

Gerard van Belle¹, and the MoonLITE Team ¹Lowell Observatory, Flagstaff AZ

Extreme Solar System Science with MoonLITE

Radii of Exoplanet Hosts
Includes diameters of lowest mass stars & brown dwarfs

Habitable Zones SizesRefinement of luminosity estimates

Detect the Closest multiples among planet-hosting stars

- Bound companions affect η_\oplus
- MoonLITE can uniquely fill in multiplicity from 0.01au outwards

Opening up a Future in Lunar Astronomy

Currently available for NASA Pioneers proposals

 Payloads up to 50kg, 200W, 300kbps, lunar daytime operations (x2, after one survive-the-night) aboard NASA CLPS landers

Upcoming SMEX / MIDEX calls could benefit

- Exoplanet mass measurement through astrometry at the 0.1uas level – significantly simpler and cheaper than SIM because of stability, absolute reference frame
- Supports HWO preparatory science

Artemis-enabled deployment of observatories

 NASA NIAC-funded AeSI (Artemis-enabled Stellar Imager) study is one such approach

Additional Science with MoonLITE

Young Stellar Objects

Probe terrestrial planet-forming regions, like ALMA has explored ice giant regions

Why the Moon?

Extreme angular resolution with extreme sensitivity

Access now available

- NASA CLPS multiple missions per year with multiple payload bays
- Artemis Starship HLS will have ~100 tons of downmass capability

No atmosphere

- Coherence time is limited by instrument (100s to 1000s of seconds)
- On earth, 1ms is typical
- A 2" aperture bests an 8m aperture in its first second of integration (and it keeps on integrating)

Low vibration

 Apollo seismic data shows a quiet (<20nm) background amplitude on ~weeks timescales

Station keeping & pointing

- No complicated, expensive, risky systems for formation flying; current state-of-the-art does not achieve interferometric requirements
- No reaction wheels for stabilizing telescope / pointing

Dust does not impede operations Years of stable operations demonstrated by LUT ultraviolet telescope aboard Chang'e-3 lander

Active Galactic Nuclei

- Visible-light exploration of AGN cores at scales similar to radio VLBI
- Observationally constrain the "final parsec problem"

Constrain spacetime foam models

- Granular nature of spacetime foam can possibly decohere light from distant QSOs
- MoonLITE's sensitivity can probe increasing 'fuzziness' of increasingly distant point sources

Surveyor 3 and the Apollo 12 LM descent stage have stationkept 180 meters apart for the past 50 years, despite their derelict nature

more than five years

The lunar surface is ideal for visible light arrays with milli- to micro-arcsecond, highly sensitive capabilities

Mature Operations in Visible Astronomical Interferometry from the Ground

Relativistic, non-Keplerian orbits of stars about Sgr A*

Cited in 2020 Nobel Prize

Circumstellar disk imaging

- Disk transiting the disk of eps Aur
- Warped disk of GW Ori

Object imaging

- Expanding fireball of Nov Del 2013
- Stellar surface of pi1 Gru, zet And
- Non-spherical surface of Altair
- The dusty veil dimming Betelgeuse

These results are all from marquee publications in Nature or Science, or a Nobel Prize

 Just the tip of the iceberg, much broader swath of astrophysics in past decade from optical interferometry

Multi-beam optical interferometry for astronomy is well-understood

The MoonLITE Team

Gerard van Belle, Lowell Observatory

• Principal Investigator

David Ciardi, Caltech

- Deputy PI
- Science team management
- Exoplanet host key science

Dan Hillsberry, Redwire Space, Inc.

- Co-Investigator
- Principal engineering liaison

Vineel Rao-Aourpally, Redwire Space, Inc.

Project manager

MoonLITE CONOPs

Sensitive, sub-milliarcsecond resolution in the extreme minimum package

(1) Landing aboard a NASA CLPS Lander

Commercially provided service

(2) Rover deploys outboard station 100m away

- Pre-loaded before liftoff, station gets simply set on surface
- Umbilical unreeled: fiber optic for beam relay, plus wire for outboard power/comms

After a single mechanical operation and the facility is ready to observe

(3) Calibration

- Station pointing models for outboard, inboard stations
- Baseline model from fringe tracking on astrometric references
- Follows standard operations of Earth-based optical arrays

John Monnier, U. Michigan
Young stellar objects key science
Fiber beam transport

Anders Jorgensen, New Mexico TechSiderostats and fringe tracking

Krista Lynne Smith, Texas A&MAGN key science

Tabetha Boyajian, Louisiana State Univ.Low-mass stellar diameters key science

Ken Carpenter, NASA GSFCInterferometery architecture

Catherine A. Clark, CaltechLow-mass binary stars key science

Gail Schaefer, Georgia State Univ.Young binaries key science

Operations

Lunar daytime ops, survive-the-night hibernation, and a second lunar day of ops (as prescribed by current NASA Pioneers guidelines)
300 hours of science operations per lunar day
Goal (currently): six days of operations

Acknowledgements:

This work has been supported by NASA, and the Lowell Observatory.

ONLINE RESOURCES

Like this poster? Get it!

SCAN ME

