

# LightBeam: Milliarcsecond Imaging in the NUV and Visible Leveraging Optical Interferometry and **In-Space Robotic Manufacturing and Assembly**

## Gerard T. van Belle<sup>1</sup>

<sup>1</sup>Lowell Observatory, Flagstaff AZ



has been supported by the NASA SBIR program, the Lowell Observatory, and Redwire / Made In Space.

Exploring the inner pixel of ALMA YSOs

Narrow Map the cores of règion UV & X-ray SMBH

\_\_//-1 AU 0.1 pc 1 pc At 20Mpc 1.0 mas 10 mas 100 mas

#### Young Stellar Objects

 LightBeam will be able to explore the inner pixel of ALMA targets · Morphology of disk structures in the terrestrial planet forming region will complement ice giant maps Active Galactic Nuclei . LightBeam can probe the inner 0.1-1.0 parcsec of AGN out to 20 Mpc

· Unique mapping of the inner edge of the dusty torus, exploring core binarity

Low-Mass Binaries Direct orbit determinations for the lowest mass stars will provide mass measures

Main Belt Asteroids & Jupiter Trojans Sizes, shapes for any main belt object > 10km (H<12.3) Resolved surface mapping for > 30 km

 ~36 known Jupiter Trojans Detection of binaries, Keplerian solutions for

binary orbits · Additional targets: gas giant moons, ice dwarfs

#### Beam combiner and printed booms being tested together with target tracking tests

Contact:

Gerard T. van Belle,

gerard@lowell.edu

rotation), and (c) its pole-to-equator intensity profile (due to gravity darkening).

LightBeam will use these techniques to map disk structures across the universe.

### Orbit of 12 Boo from Boden et al. 2005.

Using the Palomar Testbed Interferometer, Boden et al. were able to map the orbit of 12 Boo and fit a Keplerian orbit, resulting in ~0.33% mass

LightBeam will have the sensitivity, resolution and contrast to map the orbits of



avionics bay, under the feedstock container on top. Below, a view of LightBeam with partially deployed

eedstock

ntaine

/ionics

Ontics

1

E



### Examples Results of Size/Shape, and a Binary Orbit from Stellar Astronomy: LightBeam will apply these demonstrated techniques to far fainter targets