Preliminary tests of a low-cost solar infrared adaptive optics system

Abstract

Images produced by the National Solar Observatory’s McMath-Pierce telescope on Kitt Peak, the largest solar telescope in the world, have been at the mercy of atmospheric turbulence for decades. Work is currently underway to install a low-cost adaptive optics system with the goal of correction in the infrared for a total hardware cost of $25k. As a preliminary step, a slow AO system was constructed in the lab to demonstrate the feasibility of the low-cost approach. The design is a simple feedback loop that reads the wavefront shape with a Hartmann wavefront sensor and makes corrections through a micromachined membrane deformable mirror. A computer calculates the voltages to apply to the 37-actuator mirror based on the wavefront information. The system operates at 1 Hz and is able to correct a distorted laser wavefront within several cycles. This test paves the way to deploy a faster version of this system that runs at 500 Hz. Funded by NSF.

Publication
American Astronomical Society Meeting Abstracts #200