NcNath-Pierce Adaptive Optics Overview

Christoph Keller National Solar Observatory, Tucson

Small-Scale Structures on the Sun 1

Important astrophysical scales (pressure scale height in photosphere, photon mean free path in photosphere) are on the order of 0.1 arcsec

Convective phenomena at 0.1":

- shocks
- vortices
- interaction with magnetic flux
- generation of global 5-minute oscillations

Diffraction-limited white-light image of solar granulation and small-scale magnetic fields at 600 nm using adaptive optics at the Dunn Solar Telescope and phase-diverse speckle imaging

Small-Scale Structures on the Sun 2

Ohmic diffusion scale length for magnetic field structure is on the order of 0.001". Highly concentrated magnetic flux at the spatial limit of current solar telescopes:

- magnetic flux tubes
- building blocks of network and active regions
- most likely channels for transporting energy to upper atmosphere
- affect convection, irradiance, oscillations, solar cycle

Small-Scale Structures on the Sun 3

Sunspots

- magneto-convection in umbral dots and penumbral filaments
- combed penumbral fields, Evershed effect
- relevance to other stars with huge spots

High-Resolution Solar Science

Transient eruptions: flares and coronal mass ejections	Origin of solar variability	Heating of chromosphere and corona, origin of solar wind	Surface and atmosphere structure and dynamics	Exploring the unknown				
High Spatial Resolution								
		High Photon Flux						
		-	Thermal Infrared					
 IMPACT understand sources of space weather understand origin of interstellar matter understand stellar flares 	 IMPACT understand solar input to global change understand irradiance variation of solar- like stars 	 IMPACT understand origin and heating of upper stellar atmospheres understand accretion disk coronae 	 IMPACT understand basic MHD processes understand excitation of stellar p-mode oscillations 	 IMPACT open new windows provide best optical solar telescope in the world 				

Differences to Night-Time Astronomy

- Extended source that is typically much larger than detector
- No point sources
- Low contrast source, rms intensity of a few percent
- Fast temporal evolution, visible changes within 10 s at 0.1 arcsec resolution
- Worse seeing (r_0 =10 cm is excellent seeing)
- Small isoplanatic patch size (a few arcsec at most)
- Resolution is so important that visible is used to reduce diffraction
- Still relatively limited telescope apertures (<1.6 m)
- Science requires spectroscopy and often polarimetry

Low-Order Solar AO (T. Rimmele)

With AO

Without AO

- 76-cm telescope aperture
- median seeing: 7 cm at 600 nm
- 24 subaperture Shack-Hartmann

Example Optical Setup and Raw Data

line wing intensity

magnetogram

January 27, 2003

white light

CTIO Science Talk

Phase-Diverse Speckle Reconstruction

- Phase-diverse speckle imaging uses pairs of in-focus and out-of-focus images to retrieve object and wavefronts
- Ideally suited to reconstruct partially-corrected images
- Collaboration with Paxman, Seldin, Carrara, and Rimmele

The World's Largest Solar Telescope

Infrared Instruments

- 1 to 5 μm imager and polarimeter (1 to 2.3 μm)
- 1.56 µm imaging vector polarimeter
- 0.3 to 12 μm grating spectrograph
- 0.3 to 20 μm FTS
- 6 to 15 μm imager (NASA)
- 12 μm vector polarimeter (NASA)

Adaptive Optics is by far the most important improvement that can be made to infrared observations at the McMath-Pierce

Solar Infrared Science 1

Data courtesy D. Rabin

- General infrared advantages:
 - LTE line formation
 - strong visible spectral lines formed in upper photosphere and chromosphere are dominated by scattering, NLTE
 - clean way to measure thermodynamics and magnetic fields in higher atmospheric layers
- CO band at 4.8 µm:
 - text-book chromosphere exists almost nowhere on Sun

Solar Infrared Science 2

- MgI at 12 µm:
 - model-independent
 vector fields in upper
 photosphere
 - more force free in higher layers, better suited for field extrapolation
 - sensitive to field
 strengths ~ 100 G
 - penetration of weak
 fields into higher layers

AO Requirements for 1.5-m Telescope

wavelength (µm)	r _o (cm)	actuators	bandwidth (Hz)
0.5	4	1100	200
1.5	15	78	50
2.3	25	28	30
10.2	150	2	5

Assumes:

Tip-tilt is sufficient!

- Kolmogorov statistics
- Single seeing layer with constant wind speed

Tip-Tilt Correction: Universal Tracker

- General-purpose tip-tilt correction with three modes:
 - Digital quad-cell for sunspots
 - Digital limb tracker for various limb position
 - Correlation tracker
- Reference can be moved digitally to scan image across slit
- Current update rate is 500 Hz, corrects to about 50 Hz
- Used for scientific observations by users since April 1, 2002

Limb-Tracking Performance

Universal Tracker Science 1

- First FTS observations of CO limb emission at 4.8 µm
- Observations and figure courtesy Tom Ayres

Universal Tracker Science 2

- NASA Goddard thermal infrared spectrograph and polarimeter (Celeste) combined with tip-tilt system
- Observations and pictures courtesy George McCabe

Universal Tracker Science 3

- Limb extension of MgI line at 10Hz with and without tip-tilt stabilization
- Graph shows position of limb as a function of wavelength
- Smaller numbers mean further away from sun center
- Observations and picture courtesy George McCabe

Low-cost, commercial off-the-shelf parts for a complete AO system:

- less than \$25k total hardware cost
- all-reflective, gold-coated off-the-shelf optics
- PiezoJena fast tip-tilt stage with large angular range
- Flexible Optics 37-actuators membrane deformable mirror
- DALSA 1kHz frame rate 256 by 256 CCD camera
- Industrial PC with 1 GHz Pentium III processor
- Coreco PC-Dig digital frame grabber

Minimizing labor costs, in particular software effort:

- Linux RedHat 7.1 out of the box
- Open-source drivers for all interfaces

Shack-Hartmann Wavefront Sensing

- High-order wavefront sensing at 0.9 µm to use 'cheap', fast CCD camera instead of expensive IR camera
- Requires 100 to 200 subapertures to adequately determine wavefront
- This is about 10 times more than any other solar AO system
- Pentium III psadbw provides wavefront sensing at > 1 kHz with 200 8 by 8 pixel subapertures

Prototype wavefront sensor data of sunspot recorded at 500 Hz

Theoretical Mirror Performance

Prototype AO Setup

July 2, 2002: First Light

- West Auxiliary telescope, stopped down to 50 cm
- Wavefront sensing at 830 nm, Video 'science' camera at 990 nm
- 250 Hz closed-loop update rate, 193 subapertures

Jan. 22, 2003, First Thermal IR Light

- Median seeing conditions
- 4.8 µm imaging of sunspot close to limb, 0.8 arcsec diffraction limit
- Wavefront sensing at 900 nm
- 955 Hz update rate, 107 subapertures

Jan. 22, 2003, First Limb Correction

- Prototype available on shared risk basis starting now
- User system will be built during the next 12 months
- Linux 2.6 kernel will provide even better real-time behavior
- Simple upgrade: Okotech mirrors available with up to 119 actuators
- Processing architecture scales well:
 - Pentium 4: 3.2 GByte/s, 16 pixels simultaneously!
 - CMOS Cameras with 1280 by 1024 at 485 frames/s (660MB/s)
 - 64-bit, 66MHz PCI bus frame grabbers-> 528 MB/s

wavelength (µm)	r _o (cm)	actuators	bandwidth (Hz)
0.5	4	1100	200
1.5	15	78	50
2.3	25	28	30
10.2	150	2	5